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Executive Summary

Overview

This report documents research conducted under co-operative agreement number
na14nos4830001 between the National Oceanic and Atmospheric Administration
(noaa) and the Center for Coastal and Ocean Mapping (ccom) at the University of
New Hampshire (unh). The co-operative agreement was competitively awarded to
ccom to support “relevant research and development activities associated with with
fy13 Disaster Relief Appropriations Act-related lidar and acoustic coastal/ocean
mapping and marine debris mapping data processing problems,” as called for by the
original Federal Funding Opportunity (ffo) document. This report covers a perfor-
mance period from October 2013 to September 2015.

The primary objectives of the research were to develop methods for detection,
aggregation, and characterization of marine debris; to examine the performance en-
velope of a variety of remote-sensing instruments; to investigate methodologies for
data product construction and communication; and the public communication of the
results of the research through outreach efforts, expressed within the framing struc-
ture of surveying in a storm-response scenario.

To support these objectives, research was conducted in five primary themes that
were aligned with the programmatic priorities of the original ffo:

1. “lidar, habitat, and specialized data processing,” which looked at extracting
extra information from Light Detection and Ranging (lidar) return waveforms
in order to support habitat research and change monitoring, with particular
emphasis on submersed aquatic vegetation (sav); determination of the mini-
mum observable differences in repeated lidar mapping; methods for habitat
classification and change detection; use of satellite-derived bathymetry (sdb)
for change detection in shoreline and volumes; use of sdb to highlight areas of
charts that might require update; use of satellite imagery for sav mapping; and
the limitations of these various instruments.

2. “Marine object management,” which developed a robust method for detection
of marine debris with multiple non-ideal detectors and use of semi-empirical
prior knowledge on likely prevalence of marine debris as a means to control the
complexity of this problem; and methods to package these results and com-
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municate them correctly, and compactly, between parties involved in a storm
response.

3. “Improved storm-response surveying with phase-measuring bathymetric side-
scan echosounders,” which developed methods for processing phase-measuring
bathymetric sidescan (pmbs) data through conventional hydrographic tools; de-
veloped best practices for surveying with these instruments in a storm-response
scenario; examined the concerns relevant to object detection with such systems;
proposed methods for data analysis to assist in storm-response (and general)
surveying; and demonstrated how pmbs systems could be integrated into a
conventional multibeam echosounder (mbes) survey scheme.

4. “Visualization,” which developed a new tool to assist with the automated se-
lection of viewpoints for complex data, with particular application to marine
debris identification; and developed this into a crowd-sourcing opportunity.

5. “Outreach,” which communicated the purpose and results of the research via
the public website; interaction with k-12 students and their educators through
the SeaPerch and Ocean Discovery Day events; the development of infographics
in print and interactive electronic form; and the co-development of a museum
exhibit on the theme of hurricanes and marine debris.

This final report demonstrates that all of the proposed milestones for the project
were achieved, and in many cases exceeded. Many of the techniques developed were
also found to have impacts beyond the scope of the current project. A total of 25
publications were generated as part of the project, including one journal article, 11
conference papers or presentations, and 13 white-papers or best practice documents.
The project website, http://sandy.ccom.unh.edu contains all materials related to
the project, including the original proposal, all progress reports, all white-paper and
best-practice documents, and all available conference papers or presentations. The
website also hosts the crowd-sourcing marine debris experiment, and the interactive
infographics.

Research Conducted

LIDAR, Habitat, and Specialized Data Processing

Research in this theme was focused primarily on applications, rather than instru-
ments, since lidar and satellite imagery were both used for shoreline/bathymetric
change detection and habitat monitoring/classification. A Super Storm Sandy-affect-
ed area in Barnegat Bay, nj, was chosen as a common site for testing many of the
techniques developed, primarily due to data availability.

The availability of multiple lidar datasets for the area, from different lidar
systems, was used to identify the minimum observable difference for repeated surveys,
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Figure es.1: Depth as a function of distance for four bathymetric lidar collections
over three years of data from three different lidar systems in the Barnegat Bay Inlet
region. The change pre- and post-storm (red and blue lines) is clearly significant with
respect to the self-noise of the systems.

i.e., the minimum amount that two surveys have to differ for the difference to be
considered more than observational uncertainty. The results (Figure es.1) indicate
that the minimum difference considered to be “observational” is on the order of
±0.1 m. sdb techniques cannot be used to provide absolute depths since it is assumed
that there will be a lack of reference depths from a conventional survey in a storm-
response scenario. Relative estimates of slope can be constructed, however, which
are indicative of change (Figure es.2) and can also be used to show levels of seasonal
variability, which are used for calibration purposes.

Research into the use of lidar and satellite imagery for shoreline change was also
conducted, which showed that a long-term trend for shoreline change rates could be
derived from satellite imagery. The effects of Super Storm Sandy could be identified
in some areas, implying that significant changes can be detected using these methods.
Repeated lidar surveys were also used to derive direct estimates of deposition and
erosion rates around Mantoloking, nj. Procedure documents were generated for both
processes.

Classification features, derived from lidar waveforms, were used as the basis of a
classification scheme for sav (Figure es.3). Object-based image analysis (obia) was
used in Trimble eCognition to construct a rule-set for four different habitat classes of
sand, mixed macroalgae and sand, sparse eelgrass, and dense eelgrass, and compari-
son against ground-truth data showed an overall classification accuracy of 85%. The
classifications used were shown not to be statistically different from manual classifica-
tions for the same area, and the rule-sets used were shown to be portable to different
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Figure es.2: Preliminary results showing morphological changes at the entrance of
Barnegat Bay Inlet pre- and post-Super Storm Sandy. The two images on the left
are the slope maps from 2012-01-29 (pre-Sandy) and from 2013-06-01 (post-Sandy)
acquired by WorldView-2 and Landsat 8, respectively.

areas and different lidar systems with compatible waveform features, although the
specific parameterization of the rule-sets had to be adjusted.

Techniques were also developed to use satellite imagery for sav mapping, partic-
ularly as a source for fine time-step estimates of change. Using Landsat 8, it was
demonstrated that estimates of sav density could be constructed from the tri-band
imagery (Figure es.4) and comparison against ground-truth data from a long-term
study by Rutgers University showed agreement on the order of 75–88%, with some of
the discrepancy potentially due to seasonal variability of the sav.

Throughout the research, care was taken to ensure that the data products being
generated would be compatible with the construction of Coastal Engineering Indices
(cei), although since there is currently no consensus on what a cei would entail, no
index was proposed. Procedures documents were developed for all of the techniques
proposed, including use of sdb to assist in chart update and comparison, particularly
so that they could be readily communicated to the Integrated Ocean and Coastal
Mapping (iocm) contract group at the noaa-unh Joint Hydrographic Center, a
sister project, where they are currently in active use.

Marine Object Management

This theme focused on developing a model for the robust detection of marine debris
using remote sensing techniques, accepting that this problem is inherently difficult
because of the ill-defined nature of what constitutes “marine debris.” The work uses
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Figure es.3: Benthic habitat map for the Barnegat Inlet flood tidal delta complex
created using noaa ngs Riegl VQ-820-G data (including auto-generated waveform
features), Applanix dds digital aerial imagery, and an object-based image analysis
approach in eCognition.
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Figure es.4: sav density using Landsat 8 imagery from four different time periods
in Barnegat Bay Inlet, nj: (a) 2013-06-01; (b) 2013-08-20; (c) 2014-06-29; and (d)
2014-08-07. Density values range from 0% (red) to 100%, normalized to 1.0 (green).

a Bayesian hierarchical statistical model to generate a probability density map for
marine debris presence, and builds an idea of the potential for debris abundance
(Figure es.5) from observations associated with previous storms. This is used to
provide a prior estimate as to debris prevalence, which can help in constraining the
overall estimation problem. Empirical data from the Gulf of Mexico Marine Debris
Program, noaa’s Marine Debris Program and Office of Coast Survey responses to
Super Storm Sandy were used for construction of the prior model, while noaa Office
of Coast Survey data in Jamaica Bay, New York, ny, was used for case-study testing
of the methods developed.

The algorithm developed combines prior information with multiple non-ideal de-
tectors of marine debris, which are based on automated analysis of data products
typically generated in the normal course of survey operations. The logic is that in a
storm-response scenario, it would be unlikely that there would be resources available
for more specialized data collection. Each of the detectors is expected to be fallible,
but since they are not all fallible in the same way, the research shows how they may
be fused together to form a detector that is more robust.

A case study was conducted against ground-truth marine debris data collected
by noaa contractors as part of the Super Storm Sandy response, and was shown to
develop probability maps that correspond to the density of objects identified by hand
(Figure es.6). Receiver Operating Characteristic (roc) curves for the same area show
an Area Under the Curve (auc) value of 0.880 for the model when spatial context
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Figure es.5: Predicted distribution density of marine debris in the sss study area.

was taken into account, which indicates strong detection capabilities with few false
positives. The roc curves also demonstrate that the addition of spatial context to
the estimation problem has positive benefit.

Finally, the research addressed the question of how to readily transfer information
on marine debris objects between the various entities involved in a marine debris
response, driven by the observation that no common vocabulary for such purpose
existed. A “markup” language was developed from the core objects in the Geographic
Markup Language (gml), a commonly-implemented standard, which allow marine
debris objects described in the Marine Debris Markup Language (mdml) to be readily
processed with standard applications.

Improved Storm-Response Surveying with Phase-Measuring
Bathymetric Sidescan Echosounders

Research on the use of phase-measuring bathymetric sidescan (pmbs) sonars balanced
concerns of exploring the limitations of these systems and developing best-practice in-
formation for their use in a storm-response scenario. The research highlighted histor-
ical problems with pmbs systems, and showed that hardware and software advances
by some manufacturers have largely resolved these issues for their systems. These
improvements have increased the ability of pmbs systems to detect and maintain in-
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Figure es.6: Results of the hot spot analysis in Jamaica Bay, New York, ny, with the
ground-truth positions of the marine debris designated by human analysts showed as
blue dots.

formation on objects of hydrographic significance (such as marine debris), such that
they can now be routinely and reliably detected in data (Figure es.7). Identification
of objects remains a challenge, but it is argued that co-located sidescan generated
by a pmbs in addition to the bathymetry improves on this situation, and its use is
strongly recommended. It is argued that the most effective strategy for survey in a
storm-response scenario may very well be to have more widely spaced survey lines in
order to improve efficiency, relying on the sidescan data to identify potential targets,
which can then be re-surveyed with optimal survey geometries.

A series of best-practice suggestions are presented, among them to require water
column data, or sidescan in order to assist in object detection; to require uncertainty
estimates from manufacturers of pmbs systems; use of the outer swath to increase
detectability; to filter data to omit only outliers and not the tails of noisy data thereby
maintaining the original statistics; and to build cube statistical surfaces to assist in
data processing rates.

Previous arguments emphasized the importance of simultaneous sidescan and
bathymetry information from pmbs systems; to capitalize on this, a prototype graph-
ical user interface (gui) was developed to demonstrate the benefits of co-analysis of
such data (Figure es.8), a tool which is conspicuously absent in conventional hydro-
graphic data processing software. A mock-up of a suitable gui demonstrates that
simple techniques such as showing the same cursor position in all data views, or
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Figure es.7: Visibility of distinct objects in pmbs data, here 5 m apart (note 5 m
total length scale bar in all images). Evidence in multiple paths shows that these are
distinct objects, but does not necessarily support identification.

showing a range-ring about the pmbs corresponding to a target position can radically
improve user understanding of data.

Finally, the research demonstrates that pmbs estimates of depth constructed
through completely automatic means using the cube algorithm applied to a shallow
water survey in Plymouth Harbour, England, are comparable with mbes estimates in
the same area, with the only significant disagreement being on steeply sloped areas.

Visualization

Visualization research focused on how to optimize operator output when attempting
to identify marine debris. The Marine Debris Rapid Decision Tool (mdrdt) was
developed (Figure es.9) which automatically selects multiple, optimal views of the
target object that are expected to best highlight the shape of the target and thereby
assist the operator in identification. The views are embedded in a fully-functional
3d visualization system so that the viewpoint can be adjusted as required, but it
is argued that the more often the views allow for early identification of the object
without the need for adjustment, the more efficient the operator will be. Simplified
tools to mark objects as debris, and to associate a confidence of identification, are
provided.

The techniques developed for mdrdt were also applied in a web-based tool (Fig-
ure es.10) as a model for a crowd-sourced approach to marine debris identification.
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Figure es.8: Prototype gui for simultaneous review of bathymetry and sidescan im-
agery from a pmbs system. The “Show Cursor On All” option has been selected to
assist in cross-identification of a target in all views (red crosshairs), and the “Show
Range Ring” option has been used to correlate a target in sidescan with a particular
range from the pmbs in the bathymetry.

It is argued that the lack of trained operators can be a significant limitation during a
marine debris project, and therefore that it might be advantageous to use a group of
volunteers to assist. An experiment hosted on the project website demonstrated that
the identification performance of untrained volunteers, neglecting the (automatically
identified) lowest quality volunteers, showed 84% agreement with a trained operator.

Outreach

Outreach efforts were conducted across a variety of media. The simplest outreach
opportunities were afforded by the project’s website, which was used to host all of
the documents generated by the project, but was also used to host informal “info-
graphics” explaining general topics such as marine debris and survey protocols as
well as interactive infographics showing simplified versions of marine debris data, and
experimental data analysis techniques.

The project was afforded a more permanent outreach opportunity through a col-
laboration with the Seacoast Science Center (Rye, nh), a local interactive science
museum. This collaboration supported the development of an interactive exhibit
that explores hurricanes, the marine debris problem, methods for debris identifica-
tion, and the decisions associated with whether and how to remediate debris. An
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Figure es.9: Screenshot of the Marine Debris Rapid Decision Tool. The multiple views
of the target under investigation are automatically selected to assist the operator in
identifying the target, ideally without having to adjust the viewpoints or manipulate
the data.

interactive, touch-screen exhibit was developed with the aid of undergraduate com-
puter scientists (Figure es.11) which demonstrates principles of survey and marine
debris identification. The exhibit will open at the Seacoast Science Center during
winter 2015.

Further outreach opportunities were fostered through collaboration with unh-led
stem events. The project provided several interactive demonstrations of mapping
technologies and related research during the unh Marine School’s Ocean Discovery
Day in 2014 and 2015, and partnered with the regional SeaPerch competition (Fig-
ure es.12) in 2014 to introduce k-12 students and their educators to the problems of
marine debris, the aims of the project, and the issues surrounding debris remediation.

Conclusion

The co-operative agreement has resulted in research on a number of themes, all of
which have been documented through academic papers, conference presentations, and
white paper documents, hosted on the project’s website. This research has shown
that there are significant benefits to be had through their adoption for the collection,
processing, and dissemination of multi-use iocm data products. Active efforts to
transfer the research into operational use have taken place.

11



Figure es.10: A screenshot of the web-based crowdsourcing interface. Users see a
single zoomed-in image, and can scroll through or click on the thumbnail images at
the bottom to view each of them as many times as needed.

(a) Conceptual design. (b) Exhibit screenshot.

Figure es.11: The “A Hurricane Hits Home” exhibit at the Seacoast Science Center,
Rye, nh, and an example screen-shot from the interactive exhibit.
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Figure es.12: SeaPerch afternoon “team challenge” event, 7 June 2014. Clockwise
from top left: divers deploying simulated “marine debris” in the engineering test
tank; a team adapting their SeaPerch; a dual-Perch marine debris removal system;
SeaPerch rovs removing simulated debris.

In addition to the specific benefits associated with the immediate fields of applica-
tion of the various techniques developed, there is potential for wider impact of many
of the techniques. lidar-derived waveform features could be used more generally for
rapid habitat assessment as an add-on product for conventional lidar surveys, and
the use of multiple passes of satellite imaging could be used to provide a baseline for
seasonal or long-term habitat change. The marine debris detection model could also
be used for general hydrographic feature detection and management, and the tech-
niques developed for pmbs data collection and processing could be used to support
the use of such systems for general hydrography. The techniques developed to select
viewpoints for marine debris inspection could also be applied to the general problem
of selection of data orientation for hydrographic data processing. And the proposed
crowd-sourced debris identification application could be used for future storm events,
or even for general hydrographic practice.

Many of the techniques developed for this project have already had an influence
on practice within the iocm sister-contract at the Joint Hydrographic Center. It
is argued, however, that there is significant potential for loss of capabilities as the
immediate projects (eventually) come to an end. It is recommended that efforts to
preserve the gains achieved through this project are pursued.
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Chapter 1

Introduction

1.1 Background to the Project

At 1930 edt on the 29th of October 2012, Super Storm Sandy1 made landfall on
the u.s. east coast near Brigantine, nj (Figure 1.1–1.2). The convergence of the
storm with an intense low-pressure system, its unusual approach direction (from the
east rather than from the south) and its coincidence with astronomically high tides
made Super Storm Sandy one of the deadliest and costliest hurricanes in u.s. history,
causing 147 deaths in the u.s. and more than 70 billion dollars in damages [1]. Most
of the damage caused by Super Storm Sandy was focused on the coastal zone, with
flooding (the hurricane caused record high storm surges in New York, New Jersey and
Connecticut), high winds and powerful waves resulting in the destruction of buildings,
homes, roads, vehicles, and many other objects over hundreds of miles of coast.

In the wake of Super Storm Sandy, it became clear that many of the techniques
and tools used for surveying were not optimal for use in the response to a storm
event. Storm response surveying requires a different approach from that in which hy-
drographic tools and techniques are generally used, as the emphasis is often on more
rapid processing of data, or less stringent standards of accuracy traded off against
more area covered in less time. Consequently, there was a clearly felt need for inves-
tigation of how standard survey techniques and tools could be modified, or extended,
to be more effective in response to the result of a storm on the coastal environment,
and in particular to the concept of Integrated Ocean and Coastal Mapping (iocm),
where data might be gathered for one purpose, but usefully applied to a variety of
problems.

In addition, it was clear that a significant amount of data was going to be collected
in the wake of the storm, and that there was likely to be a processing bottleneck in
dealing with all of that data in a timely manner. Although a separate funding in-

1The storm is variously known as “Super Storm Sandy,” “Hurricane Sandy,” and “Post Tropical
Cyclone Sandy, ” depending on the author. The term “Super Storm Sandy” is used consistently
within this report for convenience, and consistency with the initial proposal document, but without
any intent of limitation, or of precise meteorological definition.
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Figure 1.1: Satellite image of Super Storm Sandy on 2012-10-30, approximately at
its maximum extent, a day after making landfall. Photo: nasa.

(a) Aftermath, Seaside Heights, nj (b) Aftermath, Mantoloking, nj

Figure 1.2: After-effects of Super Storm Sandy land-fall, which included the gener-
ation of some obvious (and much more not so obvious) marine debris. Photos: ap
Photo/Julio Cortez.
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strument was used to support the iocm Center at the noaa-unh Joint Hydrographic
Center, it was clear that new techniques and tools would likely be required to assist
in the processing task, for which some research effort was going to be required.

While the damage caused by the storm can easily be documented by airborne or
satellite imagery for those areas that are above sea level, the impact of the storm
on those areas at or below sea level (i.e., the presence of debris and changes in the
shape of the seafloor that can create navigational hazards, or the impact on benthic
marine habitat) is much more difficult to assess. Recognizing this, the fy-13 Disaster
Relief Appropriations Act contained funds to support state and Federal efforts to
acquire and process coastal and ocean mapping data in order to support marine
debris removal and beach nourishment efforts, as well as to update nautical charts,
create more accurate inundation models and better understand the impact of the
storm on marine habitat.

In response to this, the National Oceanic and Atmospheric Administration (noaa)
released a federal funding opportunity (ffo) document, number noaa-nos-ocs-
2013-2003801, calling for “relevant research and development activities associated
with the fy13 Disaster Relief Appropriations Act-related lidar and acoustic coastal/
ocean mapping and marine debris mapping data processing problems,” with the ex-
pectation that proposals “shall provide beneficial outcomes for the affected coastal
areas through improvements in Integrated Ocean and Coastal Mapping processing.”
A proposal was subsequently submitted by the Center for Coastal and Ocean Map-
ping (ccom) to carry out research in line with the ffo, which was selected for funding
as a co-operative agreement between the University of New Hampshire and noaa.

This document is the final report on that research, and seeks to summarize the
research conducted during the period 2013-10-01 to 2015-09-30 under the agreement.

1.2 Goals and Objectives

The proposed research was predicated on three primary goals:

1. Improving the efficiency and scope of survey operations conducted in support
of post-storm disaster recovery;

2. Raising awareness of best practices and procedures for data collection, process-
ing, and management; and

3. Supporting flexible and efficient planning and preparedness for, and response
to, significant storm events through provision and wide dissemination of appro-
priate data products;

which were designed to support the programatic goals of the ffo, particularly with
respect to the noaa priorities of coastal resiliency, safe marine transportation sys-
tem, ecosystem-based management, and the ability to plan and respond to climate
variability.
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The emphases of the research conducted were directly informed by these goals.
In particular, each segment of the research has attempted, whenever possible, to
document the procedures and tools that have been developed, many of which are
referenced through this report, and which are also available through the project’s
website. In addition, the research has considered a number of new improvements
on data processing techniques for commonly available data, for example the use of
satellite-based imagery to support submersed aquatic vegetation (sav) detection, or
the extraction of waveform features from lidar data; and has considered better meth-
ods for surveying with current tools, such as phase-measuring bathymetric sidescan
(pmbs) sonars, which will also cross-over into standard hydrographic practice. Fi-
nally, all phases of the research have ensured that the products being generated are
constructed in a fashion that is compatible with down-stream decision-making tools,
such as conventional geographical information systems (gis) and more specialist tools
such as the Emergency Response Management Application (erma), but particularly
those tools being utilized by the Integrated Ocean and Coastal Mapping (iocm) team
at the Joint Hydrographic Center (jhc) in their sister-project on Super Storm Sandy
response.

Specifically, however, the research was structured with respect to four overall
objectives:

1. Development of methods for detection, aggregation, and characterization of
marine debris;

2. Examination of the performance envelope of a variety of remote-sensing instru-
ments;

3. Investigation of methodologies for data product construction and communica-
tion; and

4. Communication of the results of the research through outreach efforts;

which have guided the overall direction of the effort. As detailed in the remainder of
this report, these objectives have been largely achieved.

With respect to development of methods for marine debris processing, the project
has developed a new technique, based on a robust statistical model, which combines a
priori knowledge derived from marine debris cleanup of previous storms with a set of
object detection techniques so that the overall complexity of the marine debris prob-
lem is constrained, and the non-ideal detections from the different detectors can be
fused in a robust manner. The resulting output is a statistically robust estimate of the
probability of marine debris presence that can be used as a guide for clean-up opera-
tions. The technique also includes a language for cross-vendor description of marine
debris that can bring some commonality and consensus in transferring information
between participants in a clean-up effort, easing communication of data products
through the processing and decision-making chain. In addition to this direct ap-
proach to the objective, the research conducted has also looked at the human-factors
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involved in marine debris data analysis, considering new visualization techniques to
improve human operator efficiency when tackling the difficult (and often tedious)
task of identifying marine debris, and at how to make this task into something that
might potentially be crowd-sourced in the event of another storm event, addressing
the resource limitations that are often observed in such situations.

The research addressed the question of limitations of performance of current sys-
tems primarily through examination of the pmbs systems often used for surveying in
very shallow water, and the capabilities of lidar systems. For pmbs systems, the pri-
mary concerns for their use in production hydrographic surveying are processing the
data using conventional tools, and their ability to detect and maintain the presence of
small objects through the processing chain. The research reported here demonstrates
that advances in data pre-processing developed by the manufacturers of pmbs sys-
tems, and particularly the availability of nadir data and uncertainty estimates, make
it possible to process such data through conventional toolchains without difficulty;
and that, constructed correctly, grids made from pmbs data can preserve the presence
of objects (although the use of the co-located sidescan data from pmbs systems is
also strongly recommended). The best practices and procedures are summarized in a
series of white-papers. For lidar systems, the research demonstrates that shoreline
and volumetric changes due to storm events can be reliably captured in lidar data
(i.e., are beyond the measurement uncertainty).

Almost all of the themes of the research program address the objective of product
creation and communication in some sense. For example, in the marine debris work,
the research has developed, in conjunction with noaa’s Marine Debris Program, a
computer mark-up language that allows marine debris objects to be concisely and
unambiguously described, avoiding the problem of, for example, the remains of a
ship being classified variously as “ship,” “boat,” “wreck,” “ships,” and “ship,” as
has been observed in some databases of marine debris in the Sandy-affected area.
Within the lidar and satellite imagery work, products are generated as standard gis-
style objects which are readily exchangeable, while within the pmbs theme, standard
hydrographic tools are used. In all themes, the procedures have been documented,
and are available on the project’s website.

Finally, the objective of outreach and communication of results has been addressed
in three separate efforts: construction and maintenance of a public-facing website (in-
cluding the crowd-sourcing experiment for marine debris identification), participation
in k-12 stem2 activities, and development, in conjunction with a local interactive sci-
ence museum, of a child-friendly exhibit exploring marine debris issues in the context
of storm response.

Through all of the research, however, one primary objective has guided the effort,
which is a focus on developing practical tools to support storm-response surveying.
That is, surveying in the wake of a storm is not necessarily the same as surveying
for primary hydrographic purposes. For example, if the purpose of the survey is

2Science, Technology, Engineering, and Math.
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to identify marine debris objects that are going to be removed, it does not matter
so much if a precise least-depth is determined, and approximate techniques can be
used. Or it might be permissible to use wider line-spacing to improve efficiency
(using sidescan imagery to fill gaps), or alternative (approximate) data sources such
as satellite-derived bathymetry, if they are more readily available and give a better
time series of changes in order to assess the significance of a storm’s effects. This focus
on practical tools is driven primarily by the connection to the iocm sister project,
but has the happy coincidence in making the tools developed more readily useful in
the event of the response to a future storm event.

1.3 Structure of the Report

1.3.1 Topic Areas

The structure of this report follows directly from the research themes proposed, which
themselves reflect the programatic priorities of the ffo, and cut across the objectives
outlined in the previous section. The proposed research covered five major themes:

1. lidar and satellite remote-sensing data processing, with connections to habitat
monitoring. The research has looked at new techniques for extracting better
information metrics from lidar waveforms, and use of these metrics for habitat
classification and change analysis; use of lidar for shoreline and volumetric
change in the wake of a storm; use of satellite-derived bathymetry for shoreline
and volumetric change analysis with emphasis on time-history of the changes to
identify when significant change has occurred; and application of these to chart
update and change determination.

2. Use of Phase Measuring Bathymetric Sidescan (pmbs) sonars for response sur-
veying, and the associated data processing requirements. The research has
looked at some of the processing chain problems associated with pmbs data, and
shown that pmbs can now be processed with conventional techniques; methods
to improve on deployment of pmbs systems for surveying in storm response
situations; the ability of pmbs systems to detect and preserve objects, and the
conditions under which these can be optimized; and best practices for selecting
and deploying such systems.

3. Marine debris detection, databasing, and communication, including the use of
different data sources to augment the detection process. The research has looked
at models of debris prediction from extant data, and how to translate them into
structuring information to assist models of marine debris detection; how to an-
alyze survey data that would be conventionally acquired during storm response
surveying for marine debris; and how to combine the results of a number of
non-ideal (i.e., realistic) debris detectors in a principled manner to generate an
overall estimate of the probability of marine debris.

6



4. Visualization of the results of marine debris detection, and better tools for
informed decision-making. The research has looked at automatic viewpoint
selection in 3d visualization systems so as to minimize the time required to
identify marine debris; how to translate these tools into something that can be
deployed on a website; and the use of the same as a means to crowd-source
marine debris classification problems.

5. Public outreach, conducted through direct events (including a permanent mu-
seum exhibit in a local science center) and through data products and guides,
available from the project’s website.

Each of these themes is covered in more detail in one section of this report. The
original proposal document, as well as all of the interim progress reports, submitted
quarterly, can be found on the project’s website, http://sandy.ccom.unh.edu.

1.3.2 Project Products

Throughout the project, a central theme of the research was to provide, whenever
possible, advice, guidance, and procedure documents to capture the methods and
tools developed during the research. In part this was motivated by sound scientific
principles, but was also informed by the need to propagate new methods to the iocm
team at the Joint Hydrographic Center, who are tasked with using these techniques to
process all of the data being collected in support of Super Storm Sandy remediation
efforts.

A list of the products generated during the project can be found starting on
page 133; electronic versions of all of the documents can be found on the project’s
website, http://sandy.ccom.nh.edu/publications/library.html.

1.3.3 Data and Techniques

Much of the data used in this project has been sourced from public archives, or has
been provided by collaborators within the Federal government, or State organisa-
tions. ccom is not the data custodian or responsible party for any of the raw data
sources, and readers should note that some of the data are preliminary, and subject
to modification by their respective owners.

Data examples are presented here and in related documents for demonstration
purposes only and do not represent any guarantee of performance by any sonar system
or software package. No part of this report or related documents shall be taken as a
recommendation or endorsement of any particular product.
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Chapter 2

Lidar, Habitat, and Specialized
Data Processing

2.1 Introduction

In the wake of a storm event on the scale of Super Storm Sandy, there is often a
strong need to provide rapid assessment of the state of harbors, channels, and other
hydrographically significant features, primarily as an aid to re-opening ports and
providing support to the recovering communities affected by the storm. There is
often, however, also a requirement to understand the effects of the storm on marine
habitats within the area affected, where the problem can be made more difficult
because of the lack of a time history of the natural variation of the area. In both
cases, physical access to the locations of concern can be limited by the infrastructural
damage caused by the storm.

Airborne remote sensing techniques are tempting tools for these types of problems.
Not only can they cover ground rapidly, they can also do so from bases more remote
from the storm-affected area, which eases logistical difficulties. In addition, satellite-
based optical and multi-spectral imaging (msi) provide the opportunity to recover a
more dense time series of older datasets from a given area simply by searching the
appropriate archives, which is more difficult with terrestrial remote sensing techniques
such as multibeam echosounders, or bathymetric lidars. Since the location where a
response is going to be required is not readily predictable, this can be a significant
advantage.

This chapter considers the opportunities for, and potential of, airborne remote
sensing techniques to assist in the estimation of the effects of a significant storm,
such as Super Storm Sandy. In particular, it considers the use of lidar data for
classical roles such as shoreline change detection and morphological change, but also
as a source of waveform features that can be translated into maps of submersed
aquatic vegetation (sav), or other habitat features. It also considers the use of visible-
light satellite imagery as a source of bathymetric information using Satellite-derived
Bathymetry (sdb) techniques, to detect morphological changes, and as an alternative
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Figure 2.1: Location of Barnegat Bay, nj, the site of much of the work conducted for
the lidar and sdb themes.

source of habitat information on sav. Finally, it addresses the possibility of con-
structing Coastal Engineering Indices (cei) from the various products constructed,
with the goal of providing source material for ceis, rather than the ceis themselves.

2.1.1 Analysis Location

In order to allow for comparison of results between the various techniques being
developed, a common location for analysis was sought. The basic requirements were
availability of suitable datasets, relevance to the types of techniques being developed,
and a demonstrated impact by Super Storm Sandy. (This last was added in order to
demonstrate that the techniques could be used in areas likely to be affected by storms
of this type.) A number of potential locations were considered, but the best match
was in the Barnegat Bay–Little Egg Harbor region of coastal New Jersey (Figure 2.1).

Barnegat Bay-Little Egg Harbor (bb-leh) forms a long, narrow, tidal basin on
the coastline of central New Jersey. The water mass extends approximately 70 km
north-south, separated from the ocean by a series of barrier islands. Exchange of
bay and ocean water occurs through three inlets: Pleasant Canal in the northern
segment, Barnegat Bay Inlet in the central segment, and Little Egg Inlet in the
southern segment. The bay water has an extended residence time due to the limited
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number of exchange points (74 days in the summer, [2]). It ranges from one to six
meters in depth with a volume of approximately 2.4 × 108 m3 and a surface area of
approximately 280 km2 [3]. Tides are semidiurnal with a range of 0.5–1.5 m. Water
temperature ranges from −1.5◦C to 30◦C and salinity ranges from about 10 to 32 [4]
(as cited in [5]). Freshwater supply is dominated by groundwater (> 80%) with a
smaller component of surface water discharges [3].

Within the greater context of bb-leh, the area around Barnegat Bay Inlet is
of particular interest. Barnegat Bay Inlet provides a passage for small-craft and
fishing-boat traffic from the Atlantic Ocean through Oyster Creek Channel to the
New Jersey Intracoastal Waterway (Figure 2.2). The sediments around Barnegat Bay
Inlet are sandy, which is typical for the coastal areas of New Jersey. These coastal
areas experience heavy wave action with a high average grain size (0.4–0.5 mm). The
tidal ranges along the New Jersey coastline are between 1.5 m during neap tides to
2.3 m during spring tides according to noaa’s Center for Operational Oceanographic
Products and Services (co-ops). The Oyster Creek Channel at the entrance to
Barnegat Bay Inlet is characterized by strong tidal currents. Jetties at the entrance
of the inlet provide stabilization to the shoreline along the inlet, but necessitate
frequent dredging. Recent u.s. Army Corps of Engineers works using Post-Sandy
Supplemental Funds (pl 113-2) include: dredging of shoaling that occurred in Oyster
Creek (work completed December 2013) and repairing post-Sandy damage to the
north jetty that began in February 2014. In April 2014, the New Jersey Department
of Transportation (njdot) announced that navigational buoys in the Double Creek
Channel were removed due to severe post-Super Storm Sandy shoaling that created
a severe navigation hazard and unsafe channel conditions, redirecting all navigation
through Oyster Creek Channel [6]. Consequently, Barnegat Bay Inlet is a very good
example of an area strongly affected by Super Storm Sandy, and therefore where the
sorts of techniques being developed for this work are likely to be applied in the event
of future storms.

2.1.2 Dataset Selection

A primary reason for the selection of bb-leh, and Barnegat Bay Inlet in particular, as
an exemplar area for technique development is the availability of datasets in the area.
As part of the preliminary work for this project, available datasets were identified
and catalogued.

Imagery datasets were used as part of the overarching goal of identifying spatial-
temporal morphological or biological changes caused by a natural event and therefore
data sources which provided a time series of products were preferred. National and
State archives were searched for appropriate imagery (e.g., usgs EarthExplorer1).
The data downloaded from the archives included: three-band Red-Green-Blue (rgb),
four-band visible and near-infrared (vnir), and multispectral imagery (msi) that
contains more than four bands. The use of these imagery datasets spans a wide range

1http://earthexplorer.usgs.gov
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(a) noaa Chart 12324 (b) Satellite rgb imagery

Figure 2.2: Overview of the Barnegat Bay Inlet. The yellow areas in 2.2(b) mark the
traffic routes into Barnegat Bay through the two main channels: Oyster Creek and
Double Creek.

of applications. In order to define the scale of the mapping products, the frequency
of the imagery was evaluated as a function of the image resolution (Figure 2.3). It
was concluded that the resolution of the iocm products to be evaluated should be at
30 m, where 2 m products could be used as a control measurement.

lidar data were collected for Super Storm Sandy response both before and after
the storm passed through the New Jersey area; see Figure 2.4 and Table 2.1 for
collection details. The presence of multiple pre- and post-storm datasets in Barnegat
Bay, and especially Barnegat Bay Inlet, were a primary driver for selection of this
area for analysis.

2.2 Morphological and Shoreline Change

2.2.1 LIDAR Bathymetry

Storms on the scale of Super Storm Sandy can make significant changes to the mor-
phological configuration of back bays and estuaries, in addition to the more recognized
effects on large-scale structures. An initial, basic, method to address this is simply
to consider multiple datasets within a common area, and examine the differences ob-
served from appropriately configured bathymetric models constructed from remotely
sensed data. A more complex, and less well addressed problem, however, is to deter-
mine when the changes observed from such methods are actually significant, rather
than a product of the uncertainty of the measurement and processing methods.

For the study site selected, many overlapping datasets were available, and there-
fore the site is an ideal spot for data inter-comparison. Data were collected before and
after Super Storm Sandy by the usgs using the eaarl-b system, by the U.S. Army
Corp of Engineers (usace) using the czmil system, by the National Geodetic Survey
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Figure 2.3: Scatter plot showing availability of imagery for the Barnegat Bay, nj
study site. The scatter plot is based on the ground resolution as a function of date
with respect to the Super Storm Sandy event over New Jersey (October 29, 2012).
The green and blue boxes shows all the datasets that will be used for 2 m and 30 m
products, respectively.
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Figure 2.4: Super Storm Sandy lidar data collection overview. The collection
includes data from Riegl VQ-820-G (noaa National Geodetic Survey), eaarl-b
(usgs), Chiroptera I (noaa Office of Coast Survey), and czmil (U.S. Army Corps
of Engineers) systems.
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Dataset Type Sensor Date Dist. 
Delay 

Purpose 

USACE Post-Sandy 
LIDAR: CT 

Topographic Leica ALS60 Nov-2012 1 week – 

1 month 

Obtain LIDAR for digital 
elevation models and 
contours for use in 
damage assessment to 
USACE projects. 

USACE Post-Sandy 
LIDAR: Eastern 
Long Island, NY 

Topographic Optech 
Gemini 

Nov-2012 1 week –  

1 month 

USACE Post-Sandy 
LIDAR: MA & RI 

Topographic Optech ALTM 
3100  

Nov-2012 1 week – 

1 month 

 

USACE Post-Sandy 
LIDAR: MD & VA 

Topographic Optech 
Gemini 

Nov-2012 1 week –  

1 month 

USACE Post-Sandy 
LIDAR: NJ & NY 

Topographic 

Bathymetric 

CZMIL Nov-2012 1 week – 

1 month 

Depict elevations above 
and below the water in 
the NY coastal zone. 

USGS LIDAR: Post-
Sandy (DE, MD, NC, 
NY, VA) 

Topographic Optech 
Gemini 

Nov-2012 2 weeks – 

1 month 

Obtain MHW shoreline, 
dune crest (DHIGH) and 
dune toe (DLOW) 
elevation. 

USGS LIDAR: Pre-
Sandy (NJ) 

Bathymetric EAARL- B Oct-2012 2 years Pre- and Post-Hurricane 
Sandy highly detailed 
and accurate digital 
elevation maps of NJ 
coastline. 

USGS LIDAR: Post-
Sandy (NJ) 

Bathymetric EAARL- B Nov-2012  2 years 

USGS LIDAR: Pre-
Sandy (NJ) 

Topographic EAARL- B Oct-2012 1 year 

USGS LIDAR: Post-
Sandy (NJ) 

Topographic EAARL- B Nov-2012 1 year 

USACE LIDAR: 
Post-Sandy Fire 
Island (NY) 

Topographic 

Bathymetric 

CZMIL Sept-2013 1 year Data collected to depict 
the elevations above and 
below water. 

NOAA NGS LIDAR: 
Post Sandy Barnegat 
Bay NJ 

Topographic 

Bathymetric 

Riegl 
VQ820G 

Sept-2013 6 months Research efforts for 
testing and developing 
standards for LIDAR. 

NOAA OCS LIDAR: 
Post-Sandy Barnegat 
Bay, Atlantic City,  
NJ 

Topographic 

Bathymetric 

Chiroptera I 03Apr14 4 months 

 

Provide current surveys 
to update (NOS) nautical 
charting products 
following Sandy.  

Table 2.1: Available lidar datasets in the Barnegat Bay area. Dates obtained from
lidar source metadata and from http://www.lidarnews.com/PDF/LiDARMagazine-

_WozencraftHurricaneSandy_Vol3No2.pdf and http://coastal.er.usgs.gov/hurri-

canes/sandy.
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Figure 2.5: lidar bathymetry coverage from four lidar surveys over three years
from three different lidar systems in Barnegat Bay Inlet, nj.

(ngs) using the Riegl VQ-820-G system, and by noaa’s Office of Coast Survey (ocs)
using a Leica ahab Chiroptera I system. Bathymetric lidar datasets were canoni-
calized in the gis sense, meaning organized to have a consistent footprint, resolution,
and horizontal and vertical datum, etc., and clipped to areas of overlapping cover-
age in order to allow for comparison of erosion and deposition patterns (Figure 2.5).
noaa’s VDatum tool was used to convert ellipsoidal heights to orthometric heights
and finally to the Mean Lower Low Water (mllw) tidal datum, which was used con-
sistently as the vertical datum for this portion of the project. Data was gridded using
Fledermaus (qps, b.v., Zeist, The Netherlands) to the coarsest resolution of the four
datasets, 2.5 m.

Comparison of results from multiple surveys in the region of Barnegat Bay Inlet
over the course of three years (Figure 2.6) shows that the repeatability of surveys,
including seasonal variability, is on the order of ±0.1 m, and in some cases (Figure 2.8)
better than this. A result like this provides a reference point to judge the scale of
change due to Super Storm Sandy, and therefore makes it possible to conclude that in
the section of Figure 2.6 from 50–450 m along the profile, there has been a significant
change in bathymetry due to the effects of the storm. Similarly, Figure 2.7 shows
an area near the barrier island breach at Mantoloking, nj, where there has been
significant change in bathymetry due to overwash effects. The converse is also true,
meaning that the lack of change between 2013 and 2014 shown in Figure 2.6 shows
that the system is now stable (in this region at least) after the effects of the storm,
and is not recovering to its original configuration.

Availability of estimates of the distinguishable scale of change in any remotely-
sensed dataset, as well as being scientifically important, allow for alternative process-
ing techniques to be developed. For example, Figure 2.9 shows an estimate of volu-
metric change based on eaarl-b lidar data from the Mantoloking area. Previous
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Figure 2.6: Depth as a function of distance for four bathymetric lidar collections
over three years of data from three different lidar systems in the Barnegat Bay Inlet
region. The change pre- and post-storm (red and blue lines) is clearly significant with
respect to the self-noise of the systems.

Figure 2.7: Depth as a function of distance for two bathymetric lidar collections
over two years of data from the usgs eaarl-b lidar system in the Barnegat Bay
Inlet region, focusing on the Mantoloking Breach.
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Figure 2.8: Depth as a function of distance for three bathymetric lidar collections
over three years of data from two different lidar systems in the Barnegat Bay Inlet
region. No Change is observed in the area before and after the storm.
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techniques for change detection were usually limited to photogrammetric estimates of
dune height and, thereby, of change. With reliable lidar data, estimates of volumet-
ric effects pre- and post-storm can be readily constructed, showing that in an area of
120, 600 m2, the total volume change was 34, 900 m3, with 33, 300 m3 deposited and
1, 600 m3 eroded.

2.2.2 Satellite Imagery

Morphology

Although morphological changes are readily detected where there are multiple surveys
before and after an event, it is often not the case that a pre-event dataset is available
against which changes can be assessed: there is often no way to predict where an event
will happen, and prioritization of survey effort means that many areas will not have
up-to-date information prior to an event occurring. Satellite-derived bathymetric data
is therefore an intriguing possibility: since satellites can regularly cover the same area
of ground, it is possible to build up a time series of data from the area, and therefore
monitor continuously (or at least regularly) for changes. This allows for an estimate
of the magnitude of seasonal variability as well as any event-driven change. The key
issue, however, is to establish a reliable estimate of the bathymetry in any given area
from a single satellite image, so that change detection techniques can be applied.

The methods for establishing satellite-derived bathymetry, and the limitations
and uses of such products, are still developing, and were developed further during
the course of this work [7, 8]. Using data from Landsat 8 and WorldView-2, the key
element of sdb is to compute a ratio of the signals in the blue and green bands of
the imagery, matching the estimated depth to charted depth in order to provide the
absolute vertical reference required for useful products. Auxiliary steps are required
to ensure that the data is of sufficiently high quality for use, and to pre-process the
data, so that the procedure becomes:

• Pre-processing: Satellite imagery is downloaded based on the geographic lo-
cation and environmental conditions (e.g., cloud coverage and sun glint).

• Water separation: Dry land and most of the clouds are removed.

• Spatial filtering: “Speckle noise” in the imagery (particularly Landsat) is
removed using spatial filtering.

• Applying the bathymetry algorithm: The bathymetry is calculated using
the blue and green bands.

• Identifying the extinction depth: The optical depth limit for inferring
bathymetry (also known as the extinction depth) is calculated.
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Figure 2.9: Super Storm Sandy seafloor changes from breaches and overwash in Man-
toloking, nj derived from topobathymetric lidar. The storm deposited 33, 300 m3 of
material.
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• Vertical referencing: A statistical analysis between the algorithm values to
the chart soundings references the Digital Elevation Model (DEM) to the chart
datum.

The vertical referencing phase is a critical aspect of this technique, with modern
survey data (either acoustic or lidar) being preferred. However, it is not always the
case that such data exist where a sdb estimate is required, and therefore a procedure
was developed [9] to provide a robust estimate of morphological change without re-
quiring a high-resolution vertical referencing step. In this procedure, the first deriva-
tive of the bathymetry (i.e., the slope) was used to reduce the dependence on the
vertical accuracy of the produt, with the bathymetry resulting from the algorithm
being converted to a slope map, where only significant slopes (large slope values) that
represent the edges of shoal features and banks of channels were retained, represented
as contours. This was tested in the Barnegat Bay Inlet region, since during the early
stages of the project, airborne lidar bathymetry (alb) data was not available to
provide vertical control—as would often be the case in the first response scenario for
any storm—and the only vertical control was provided by hydrographic smooth-sheet
soundings from the 1930s (or earlier). The results here (Figure 2.10) show that areas
of significant effect were observed in the inlet area, but consistent with other findings,
the remainder of the bay appeared to be more stable. A sdb map of slopes could
therefore have a role to play in the early stages of a storm-response scenario as an
approximate—but readily computable—estimate of change.

In any environment with natural variability in a particular parameter, having some
estimate of the variability of that parameter is a necessary first step in understanding
whether any significant change has taken place as the result of a storm event. As
for the lidar techniques described previously, sdb can be used to identify seasonal
variabilities in a region, with the significant benefit that a more consistent, and gener-
ally longer, time series of data is usually available. To demonstrate, and refine, these
techniques for use in a storm response scenario, Landsat 8 satellite imagery acquired
after Super Storm Sandy was processed to identify areas of morphological changes
that were not related to this major storm event [10]. (No new WorldView-2 data, at
high resolution, was available for the appropriate time period of 2015-01–2014-07.)
Using the methods of [9, 10], all vegetated areas, dry land, and optically-deep areas
were removed from the imagery and bathymetry for the remaining sandy/muddy ar-
eas were calculated at 30 m resolution. A slope map was derived from the bathymetry
and the spatial differences between the slopes were used to identify the dynamic and
stable areas.

From the analysis, seasonal and annual morphological changes (dynamic shoals)
can clearly be identified within the bay (Figure 2.11). For example, the shoals on the
eastern side changed with season, while the channels within the bay were stable, al-
though their location was different from where they were charted. This demonstrates
that the techniques developed could potentially be used prospectively to provide base-
line information on seasonal variability, as well as being used for storm response.
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Figure 2.10: Preliminary results showing morphological changes at the entrance of
Barnegat Bay Inlet pre- and post-Super Storm Sandy. The two images on the left
are the slope maps from 2012-01-29 (pre-Sandy) and from 2013-06-01 (post-Sandy)
acquired by WorldView-2 and Landsat 8, respectively.

Figure 2.11: Seasonal changes in bottom morphology near Barnegat Bay Inlet during
2014, based on Landsat 8 imagery.
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Shoreline Change

In the wake of a significant storm event, knowledge of changes to the shoreline are
often high on the list of requirements for response and restoration events. Having a
reliable method of estimating the change in shoreline and, again, determining whether
it is significantly higher than the normal seasonal variability in any given area, is
therefore important.

Using the usgs Digital Shoreline Analysis System (dsas), a standard utility im-
plemented within the ArcMap application framework [11, 12], as a starting point, a
procedure [13] has been developed to assess the level of change in a shoreline, using
linear regressions against the results of the same analysis applied to prior shorelines
to determine the natural variability, or expected rate of change. The core concept is
to estimate the distance from a known, fixed, baseline to the shoreline by projecting
rays orthogonal to the baseline until they intersect with the shoreline. The variability
between shorelines along each transect is then estimated and a regression model is
used to estimate the mean rate of change, so that in the wake of a storm it is possible
to determine whether any observed change is significantly different from the historical
mean rate. The procedural steps are therefore:

• Baseline selection: Arbitrary baselines are selected for all candidate shore-
lines. The baseline are linear features located away from the land and shoreline.

• Transect construction: Perpendicular transect lines were constructed from
the baseline to intersect with the candidate shorelines. In this study, transects
were generated at an interval of 25 m or 50 m, depending on the shoreline.

• Analysis: Changes of distance between the baseline and shoreline are computed
using dsas.

• Trend calculations: The shoreline distances are processed in matlab to de-
termine a regression line over the historical record.

• Prediction: The resulting regression lines are used for prediction of shoreline
change. A root-mean-square error is used to assess the spread of mean predicted
locations, allowing comparison of the observed location in post-storm imagery.

To illustrate this procedure, datasets from the Barnegat Bay Inlet region from as
early as 1951 were recovered from noaa’s Shoreline Data Explorer (nsde2), which
includes an estimate of horizontal uncertainty, and the usgs’ EarthExplorer archive
(http://earthexplorer.usgs.gov) (Table 2.2). Shoreline change estimates were gen-
erated using the procedure outlined previously, resulting in estimates of change at five
sites around the inlet (Figure 2.12). Pre-Sandy shorelines from 1995, 2002, 2007, and
2012 were used to estimate the historical trend at each location. Then, using linear

2http://www.ngs.noaa.gov/NSDE
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Date Collection
Horizontal
Accuracy

Source Notes

2013 2013-09-24 1 m or 5 m nsde Post-Sandy
2012 2012-11-01 5.5 m noaa ngs Post-Sandy
2012 2012-03-14 to

2012-04-16
5.5 m EarthExplorer Pre-Sandy

2007 2007-03-18 to
2007-05

5.5 m EarthExplorer Pre-Sandy

2001/2002 2001-07-21 4.3 m nsde Pre-Sandy
1995 1995-03-29 5.5 m EarthExplorer Pre-Sandy
1951 1951-01-01 11.7 m nsde Excluded

Table 2.2: Shorelines used for analysis example in Barnegat Bay Inlet, nj.

Area of Interest Average trend rate (m/yr) Post-storm Rate (m/yr)
1 (inlet) -6.94 -5.42
2 (inlet) 0.54 5.65
3 (inlet) -2.70 -5.24

4 (beach face) 0.58 -42.0
5 (beach face) 2.54 -32.31

Table 2.3: Average trend rates of change prior to Super Storm Sandy (1995-2002)
and the post-storm rate (Mar., 2012–Nov., 2012). Negative values indicate erosion,
while positive values indicate deposition.

regression, the post-Sandy shorelines were compared to the predicted trend (with the
associated uncertainty). The 1951 shoreline dataset was excluded from the regression
because of the large gap in time period.

The analysis demonstrates that the bay-side sites (i.e., sites 1, 2, and 3) showed
a slight accretion, whereas the ocean-side sites (i.e., sites 4 and 5) exhibited trends
of erosion. The results (Figure 2.13; Table 2.3) indicate that the ocean-side sites
were impacted by the storm, but the bay-side were within the erosion rates predicted
using linear regression. Similar results were observed in the 2013 imagery over site 1.
These results suggest that the Barnegat Bay Inlet region has not experienced further
increased erosion (within the inlet).

While effective, these procedures would benefit from improved statistics and vi-
sualizations. An important caveat is that there is a potential difficulty in comparison
of results derived from lidar data with those from imagery. In particular, it is pos-
sible that lidar-derived shorelines might not be at mean high water (mhw), unlike
orthoimagery-derived shorelines. As a result, trends calculated with mixed datasets
might generate an error in estimation of the extent of horizontal change, especially
in areas with very shallow slope beaches [14].
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Figure 2.12: Study sites for shoreline change within Barnegat Bay Inlet, nj.
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(a) Transect Line Numbers, Site 1

(b) Predicted Shoreline Locations (red) and observed (blue)

Figure 2.13: Estimate and prediction of shoreline at study site 1, Barnegat Bay, nj.
Red lines in 2.13(b) indicate the range of shoreline location predicted, while blue
stars indicate the observed location in post-Sandy imagery. Stars that fall outside
the range predicted show significant change.
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2.3 Habitat Mapping

In the wake of a significant storm event, the focus is often, naturally, on the damage to
the built environment, and restoring some vestige of normalcy to the people affected.
However, damage to the environment, and particularly habitats in the near-shore,
back-bays, and estuaries can be subtle, and long-lasting. Shallow-water habitats, such
as eelgrass beds, can be critical to the health and well-being of the environment, since
they can act as breeding grounds, provide shelter for some species, filter the water, and
help to stabilize the sediment. Consequently, much effort has been expended during
this project to address questions of how best to determine, evaluate, summarize, and
communicate the effects of storms on shallow-water habitats.

The focus has been, in particular, on automatic, or semi-automatic methods to
assess habitats, and how to estimate the natural variability that occurs over time,
so that there is a baseline for assessing whether the change due to a storm has been
significant. Automatic techniques are a significant departure from more traditional
methods and processes, which are largely manual, and therefore subjective. However,
automatic techniques, such as the Object-based Image Analysis (obia) methodol-
ogy [15, 16] described below, can produce a finer-scale map which may lead to a
greater overall accuracy in classification, allowing for a more detailed assessment of
the impacts of storm events such as Super Storm Sandy. They are also less sensitive
to the skill of the operator. Further, the obia methodology can produce an accurate
habitat map in a fraction of the operational time and the methods can be applied to
multiple datasets collected by multiple systems, possibly with modifications to the
same basic rule-set to suit the different systems.

Habitat classification using remote sensing techniques is in general a complex
problem. However, given the focus of this work on the area around Barnegat Bay,
nj, the emphasis here has been primarily on the detection, characterization, and
description of submersed aquatic vegetation (sav) using both lidar and satellite
imagery data.

2.3.1 LIDAR Waveform Analysis

In addition to collecting information about the depth of water, some lidar systems
are capable of recording the received waveform of the reflected light pulses. In addition
to their use to estimate uncertainty of depths [17], shape parameters derived from
these waveforms have the potential for habitat mapping applications, specifically
for the assessment of submersed aquatic vegetation (sav). Derivation of maps of
sav location from rapid-assessment remote sensing techniques such as lidar has
significant benefit in the wake of a storm event, since it allows for efficient delineation
of habitat status and, assuming that previous datasets are available, change detection.

Techniques for deriving such maps have been developed as part of the current
grant. Preliminary work used Riegl VQ-820-G data collected in Barnegat Bay by
noaa’s National Geodetic Survey (ngs) in September, 2013 (Figure 2.14). Because
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Figure 2.14: Riegl lms-q680i and vq-820-g lidar systems (left) operated by noaa’s
National Geodetic Survey (ngs) in the Sandy impact area; usgs eaarl-b used to
acquire data immediately before and after Sandy made landfall. Images courtesy of
noaa and usgs.

the Riegl VQ-820-G was not configured to store full-waveforms (i.e., time series rep-
resenting backscattered signal strength) during the Barnegat Bay acquisition, it was
not possible to perform custom waveform processing with the ngs topo-bathy lidar
data set. However, this system does automatically compute and store two waveform
features during data collection: Riegl reflectance and pulse shape deviation [15, 18].
The former refers to return waveform peak amplitude, normalized using Riegl labo-
ratory calibration data and expressed in decibels, while the latter is a measure of the
difference between the received signal and a stored reference pulse.

Through collaboration with the University of Vermont’s (uvm) Spatial Analysis
Laboratory (http://www.uvm.edu/rsenr/sal), the project team developed and tested
an obia approach to habitat classification using the VQ-820-G Riegl reflectance and
pulse shape deviation data, along with the lidar-derived bathymetry and Applanix
dds digital aerial imagery, which was simultaneously acquired by noaa ngs. A final
habitat map for a ≈ 18 km2 project site was produced in eCognition (Figure 2.15).
Using ground truth data acquired by the project team in October, 2013 (Figure 2.16),
a classification accuracy assessment was then performed on this habitat map. The
overall classification accuracy was determined to be 85%, while users accuracies varied
from 69% to 100%, and producers accuracies ranged from 73% to 100% [15]. The
results of this phase of the project supported the conclusion that Riegl VQ-820-G
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Parameter Manual - OBIA Chiroptera - Riegl
Number of Patches 0.06 0.19
Mean Patch Size 0.26 0.41
Patch Size Std. Dev. 0.41 0.41
Mean Patch Edge 0.41 0.41
Mean Shape Index 0.41 0.13
Perimeter to Area Ratio 0.25 0.02

Table 2.4: Mann-Whitney U test statistic p-values for landscape metrics derived from
classification maps created from manual classification and obia methodologies (first
column) and for obia with the same rule set applied to Riegl and Chiroptera datasets
(second column).

data, including the auto-generated waveform features, are advantageous for benthic
habitat mapping in the region impacted by Super Storm Sandy.

A common question with techniques of this kind, however, is how they compare
with previous methods, and how well they adapt to different areas, and extend to
different measurement systems. To investigate the limits of applicability of these
systems, the rule set that was developed in eCognition using the Riegl VQ-820-G
was compared to a manually classified dataset (Figure 2.17) using imagery only—
the conventional methodology—and then applied to bathymetry, lidar reflectance,
and aerial imagery collected by the Leica ahab Chiroptera system in an effort to
assess the efficacy of the rule set across lidar systems (Figure 2.18). The same
rule set was finally used to classify habitat from an additional Chiroptera data set
that was collected in a different area of Barnegat Bay (Figure 2.19). No significant
differences, with the exception of patch-perimeter to area ratio, in the spatial extent of
the classified habitat were found between lidar systems (Table 2.4). Patch-perimeter
to area ratios were greater in the classification from the Chiroptera data, indicating
that while the total habitat surface area is the same between the lidar datasets,
the habitat patches themselves are smaller in the Chiroptera dataset. It is likely this
difference is due to natural seasonal expansions and contractions of eelgrass beds as
the Riegl data was collected in June 2013 while the Chiroptera data was collected
in October 2014. Minor changes to the rule set needed to be made when classifying
habitat using different lidar systems. This was also found to be true even when
classifying habitat from two different data sets collected by the same Chiroptera
system. While each individual rule remained in the same order, the parameters
within each rule needed adjustment based on the individual values collected by each
system [16].

As with the other techniques developed during this project, knowledge of the
natural variability of the habitats being considered is essential if the changes observed
in the wake of a storm event are to be assessed: if the changes are within the scope
of the natural variability, then the observed change might be simply the normal
change in density over time. In order to demonstrate the scope for the techniques
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Figure 2.15: Benthic habitat map for the Barnegat Bay Inlet flood tidal delta complex
created using noaa ngs Riegl VQ-820-G data (including auto-generated waveform
features), Applanix dds digital aerial imagery, and an object-based image analysis
approach in eCognition [15].
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Figure 2.16: Reference data acquired in Barnegat Bay in October, 2013, for assessing
the classification accuracy of habitat maps generated from lidar and imagery. The
majority of the fieldwork was performed in shallow water from kayaks.
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(a) Manual classification (b) obia classification

Figure 2.17: Habitat classification of Barnegat Bay Inlet generated from imagery
(left) and Rielg lidar and imagery (right).
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(a) Chiroptera imagery and lidar (b) Riegl imagery and lidar

Figure 2.18: Habitat classification of Barnegat Bay Inlet generated from Chiroptera
lidar and imagery (left) and Riegl lidar and imagery (right).
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Figure 2.19: Classification of habitat of an area north of Barnegat Bay Inlet from
topo-bathy lidar data collected by noaa’s ahab Chiroptera system.
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Figure 2.20: Time-series of manual classification of seagrass and mixed sav and sand
cover between 2006 and 2013.

developed in this regard, manual classification of dense and sparse seagrass as well as
mixtures of sav and sand were implemented for data collected between 2006 and 2013
using orthophotos collected by the state of New Jersey and the National Agricultural
Imagery Program (naip; Figure 2.20). The remotely-sensed and manually classified
2006–2013 trend map suggests a decline in seagrass cover, particularly at the southern
portions of Barnegat Bay. The June 2012 and 2013 field campaigns conducted for this
project corroborated the remotely-sensed results indicating the presence of seagrass
along the northern portion of Barnegat Bay and Barnegat Bay Inlet. Further, the
remotely-sensed monitoring trend indicated a decline in the area of dense seagrass in
2013 compared to 2006. Differences in image quality and the seasonal period of image
acquisition may account for the differences in the mapped area and in the apparent
thinning of seagrass density as imagery for 2006, 2010, and 2013 were acquired in the
growing season (July and August), while the 2007 and 2012 surveys were acquired
earlier in the season (March and April).

These maps were then compared to earlier base gis layers of sav identified by
the Center for Remote Sensing and Spatial Analysis (crssa), Rutgers University.
Preliminary results indicate that sav cover is temporally variable with a noticeable
decadal decline in sav from 1968 to 2013, specifically with seagrass (Figure 2.21).
It appears that the decline in seagrass is not confined to one particular region, but
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Figure 2.21: Temporal maps displaying sav coverage from 1968 to 2013. Maps for
2006–2012 and 2013 were manually classified from orthophotos that were collected by
the state of New Jersey. sav from 1968 to 1999 were identified and analyzed by the
Center for Remote Sensing and Spatial Analysis, Rutgers University.

has occurred throughout the entire bay. These results are consistent with previous
studies demonstrating decadal loss of seagrass habitat (e.g., [5, 19–22]).

It therefore appears that the techniques developed for this project are sufficiently
sensitive to pick up natural variabilities in the sav distribution in Barnegat Bay, such
that an analysis like this could be used to provide a baseline for a given area against
which changes due to a storm event could be judged.

In order to extend these results, access to a system that stores full waveforms
was required. The usgs eaarl-b topo-bathy lidar system (Figure 2.14) [23] has this
feature [24], and was used by the usgs to collect both pre- and post-Sandy data
in Barnegat Bay just days before Sandy and again within a week after the storm
made landfall [25, 26], affording unprecedented opportunities for change assessment.
Through work with David Nagle (usgs) and Wayne Wright (noaa ngs), waveform
feature extraction algorithms developed previously [17] were implemented in alps
(Airborne lidar Processing System), the eaarl-b processing software. These algo-
rithms were then used to output waveform feature files for all of Barnegat Bay in
both the pre- and post-Sandy data.
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Figure 2.22: Workflow for seafloor relative reflectance mapping with the eaarl-b
lidar [26].

The eaarl-b system is unlike other lidar systems in that it does not use a
circular scan pattern or fixed forward tilt angle to maintain a nominally-constant
incidence angle on the water surface. Instead, the system scans back and forth,
passing nearly through nadir. This scan pattern necessitates a robust incidence angle
correction algorithm to compensate for the great variation in waveform features as a
function of incidence angle. New algorithms and workflows for applying corrections
for depth and incidence angle to bottom return peak amplitude in order to generate
seafloor relative reflectance images [26] were then developed. The final workflow
is illustrated in Figure 2.22, while Figure 2.23 shows the results of applying these
procedures to generate seafloor relative reflectance imagery in the Barnegat Bay Inlet
study site. Development of these features can allow eaarl-b data to be used with
similar methods as developed for the Riegl VQ-820-G.

Practical application of the algorithms developed through this project is an im-
portant part of the work, since a parallel program of work is currently under way in
the iocm Center at the noaa-unh Joint Hydrographic Center. The algorithms and
procedures developed here have been transferred to the iocm Center, where work

37



Figure 2.23: Example of applying the procedure illustrated in Figure 2.22 to generate
seafloor relative reflectance imagery in Barnegat Bay.

is now under way to extract waveform features for Barnegat Bay Inlet. These new
software and procedures could be applied to future storm events to map and assess
change. Specific outputs include: new procedures for benthic habitat mapping with
noaa ngs’s Reigl topo-bathy lidar system; new software and procedures for wave-
form feature extraction from the eaarl-b; and eCognition rule sets that can be used
in future projects and possibly adapted for use with data collected with other sensors.

2.3.2 Satellite Imagery

As with morphological change detection (Section 2.2), satellite-derived measures of
habitat potentially have the significant advantage of a more consistent time series,
which makes it possible to provide finer time resolution for assessment of historical
rates of change. In turn, this makes it possible to provide better calibration for ex-
pected rates of change against which to compare any potential storm-induced changes.
Consequently, a procedure for determining sav distribution (including both macroal-
gae and seagrass) using satellite multispectral imagery (msi) was developed with the
overall goal of being able to demonstrate the detection of a change in sav coverage
before and after Super Storm Sandy.

The procedure was built around satellite imagery from Landsat 8 and WorldView-
2. Preliminary sav maps were created over the Barnegat Bay Inlet area using the
following steps [27]:

• Band-ratio index algorithms were applied to the imagery: blue/green for satel-
lite derived bathymetry (sdb) and a green/red band ratio to determine the
location of optically deep waters, including deep channels of the inlet.

38



• Dry land and optically-deep waters were removed from the imagery.

• The green band in the satellite imagery was used as a condition to separate
areas of vegetation from those of sandy/non-vegetated regions depending on
the return strength.

• The resulting vegetated areas were classified based on vegetation density.

The preliminary version of this algorithm was focused on detecting presence of sav
(Figure 2.24) and demonstrated changes between September, 2010 and September,
2014. However, using only the green band it is difficult to determine vegetation density
or other properties of the sav, mainly due to the spatial and spectral resolution
limitations of the available sensors. The algorithm was therefore extended to estimate
vegetation density.

In this extension, the red, green, and blue image bands are treated as a vector in
three dimensional space, and the angle between any test vector and a vector from an
area of known density is used as a discriminator in a supervised classification. The
training sets are developed from areas identified through an unsupervised classification
using an isodata algorithm [28,29], field work, and optical properties of the satellite
imagery, and the spectral signature of the non-vegetated bottom (i.e., the background
signature) was used to normalize the results (Figure 2.25), converting the angle values
that the algorithm natively produces to a density proxy.

To provide some assessment of the accuracy of the method, coverage and density
of the sav mapping results from satellite imagery were compared to the results of a
Rutgers University survey from 2009 (Figure 2.26 [5]). The overall accuracy of the
classification was assessed using a confusion matrix approach, and ranged between
75% and 88% (Table 2.5). In the first column, the accuracy assessment results consid-
ered sparse vegetation regions (based on Lathrop and Haag [5]) were counted as part
of the sav. In the second column, the accuracy assessment results did not consider the
sparse vegetation regions as vegetation (i.e., counting them as “bare”). Although the
satellite imagery was collected four to five years after the Rutgers University habitat
mapping (which was based on aerial imagery analysis acquired on June 28, July 7
and August 4, 2009), the accuracy assessment is good. Given that the imagery used
for comparison was not collected at the same time as the reference data, it is possible
that some of the variability in accuracy is attributable to seasonal changes.

2.4 Coastal Engineering Index Support

A priority for work in this project was to ensure that the products derived were
suitable for inclusion in downstream processing. Few of the products are end results in
themselves: most will be input components for more integrative analyses. A particular
example of this is the concept of Coastal Engineering Indices (cei) [30], which are
intended to provide comparable combined indices for engineering, environmental, and
human use, which provide a snap-shot of coastal conditions. ceis are also intended
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Figure 2.24: Preliminary results of vegetation mapping around Barnegat Bay inlet,
nj: (a) 2011-05-01 (WV-2); (b) 2013-06-01 (Landsat 8), (c) 2013-08-20 (Landsat 8);
and (d) 2014-06-29 (Landsat 8). sav regions are shown in green and are overlaid onto
satellite-derived bathymetric image and a noaa chart. This series of images shows
sav extent and changes from (a).
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Figure 2.25: sav density using Landsat 8 imagery from four different time periods
in Barnegat Bay Inlet, nj: (a) 2013-06-01; (b) 2013-08-20; (c) 2014-06-29; and (d)
2014-08-07. Density values range from 0% (red) to 100%, normalized to 1.0 (green).

Figure 2.26: Confusion matrix between the Rutgers survey results to one of the
study results (satellite imagery from 2014-04-10). Rutgers University classes were
classified as: Very sparse (0), Sparse (1), Dense (2), Very Dense (3). The study
results were classified as Sparse (10) and Dense (20). The intersection between the
two classifications is shown in the image on the right.
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Date
Accuracy

(“Sparse” ≡ SAV)
Accuracy

(“Sparse” ≡ Bare)
June 1, 2013 0.79 0.79
August 20, 2013 0.83 0.80
April 10, 2014 0.85 0.75
June 29, 2014 0.80 0.84
July 22, 2014 0.73 0.82
July 31, 2014 0.84 0.85
August 7, 2014 0.76 0.80
September 17, 2014 0.76 0.89

Table 2.5: Accuracy assessment (probability of class agreement) of sparse vegetation
coverage between Landsat 8 results and Rutgers University measurements. Two con-
ditions are considered to map the current measurements to the categories used by
the Rutgers study: in the first “sparse” eelgrass is mapped to sav; in the second,
“sparse” is mapped to bare ground.

to synthesize data needed to assess coastal conditions, compare regions, and monitor
change using parameters extracted from spatial data, and examine how it can be
integrated and/or transformed into a regional index.

In order to support the objective of providing products that can be used for cei
construction, products derived from topo-bathymetric lidar and high resolution im-
agery for the Super Storm Sandy habitat mapping effort, including bathymetry, slope,
rugosity, bottom return, and peak amplitude, have all been generated in standard,
documented [31], formats. Having the products generated as standard imagery makes
them more generally useful to the scientific and management communities.

These products have already been used to create habitat maps [31, 32] (Fig-
ure 2.27), and can be used to generate features for environmental applications and
cei that focus on habitat analysis. These data can also be easily cross-walked to
other standard classification systems such as noaa’s Coastal Marine Ecological Clas-
sification Standard (cmecs). Many of the parameters that can be derived map well
into the benthic habitat cmecs that has been approved by the Federal Geographic
Data Committee and adopted as a standard for benthic habitat classification by many
noaa labs.

The exact forms of specific ceis are not, at the time of writing, well defined.
However, the products being derived from this work are at least well-placed to be
inputs into this process.

2.5 Chart Update

Much of the work in this project has focused on non-hydrographic products and pro-
cesses that might support storm response and restoration efforts. However, many of
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Figure 2.27: Products derived from the usgs eaarl-b Topo-bathymetric lidar sys-
tem that can be incorporated into a Coastal Engineering Index.
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the techniques are also suitable for support of more traditional hydrographic prac-
tice. Even when not collected to hydrographic surveying standards, for example,
lidar data can serve as a critical source of bathymetry in areas too shallow to survey
with conventional acoustic technologies. Similarly, although sdb might provide the
lowest quality of bathymetry data from the publicly-available datasets, it provides a
reconnaissance tool with large coverage (185 km swath width) and can fill gaps that
may exist between the other available datasets. lidar and sdb data are particularly
valuable in emergency response scenarios, including post-hurricane mapping, due to
their ability to efficiently survey large areas from an airborne platform. As estuarine
and shallow, near-shore areas may be severely impacted during a storm event, the
ability to quickly survey these areas and identify potential navigational hazards (both
manmade and natural) is crucial.

Thus, for example, usgs eaarl-b lidar data can be used to identify features
that are not on the chart, and might need to be updated (Figure 2.28) while Landsat
8 imagery can be used to generate sdb where other data is not available (Figure 2.29),
using eaarl-b lidar data as vertical referencing information.

An important facet of the work conducted under this project is transfer of tech-
niques, in particular to the iocm group working at the Joint Hydrographic Center.
In addition to white-papers3 published, ccom researchers have been actively assist-
ing the iocm group, and noaa’s Marine Chart Division, to use sdb for evaluating
chart adequacy and chart preparation [33]. Based on this experience, the iocm group
now plan to derive bathymetry from the New York coastal areas using procedures
pioneered through this grant.

3http://sandy.ccom.unh.edu/publications/library.html
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Figure 2.28: Examples of pre-storm eaarl-b data showing potential uncharted sub-
merged objects. Left: a cable within the designated cable area, and uncharted shoal
immediately south. Right: a small chain of shoals parallel to the deeper channel.
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Figure 2.29: Coverage of satellite derived bathymetry derived from a Landsat 8 satel-
lite image collected on 2014-04-10.
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Chapter 3

Marine Object Management

3.1 Introduction

3.1.1 The Marine Debris Problem

Marine debris is a general problem in the oceans, and a particular problem in coastal
areas due to the proximity to human activities. Although marine debris enters the en-
vironment continuously, storm events can significantly accelerate this process, break-
ing down the built environment and anthropogenic materials and washing them into
local waterways. In the wake of a significant storm event, therefore, there is an imme-
diate need to identify marine debris in the affected area, and then to decide whether
it should be left in situ or removed. In some cases, this process might be due to con-
cerns for navigational safety (e.g., sunken barges blocking the entrance to a port), in
others due to concerns about potential pollution (e.g., oils and gasoline in cars washed
into a river), and in still others due to concerns of safety (e.g., building detritus in
populated areas). Whatever the reasons for concern, however, the primary goal is
identification of marine debris, and management of this information from survey to
restoration.

In practice, however, this process is generally not straightforward. Marine debris
is often not well defined, and therefore the extreme variability of shape, size, material,
etc., can make robust identification difficult. In other fields, particularly mine counter
measures and pipeline inspection, there has been a lot of work done on marine object
detection. However, although several of these techniques have been modified and
adopted here [34–36], these techniques are often successful because they can rely on
knowledge of specifics of the targets [37], which makes the problem somewhat simpler.
In other words, if one is looking for mine-like objects, for example, the target can be
modeled quite well since one generally knows at least roughly what they look like.
With marine debris, the loose definition of “target” means that this is generally not
the case [38].

The objective of this work is therefore to develop a model that allows for the
detection of marine debris in a suitably robust manner, taking into account as many
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sources of information as possible, providing the results in a manner that can be read-
ily transferred to others in a standardized format, so that it can be used for further
downstream studies and remediation/restoration efforts. In this context “informa-
tion” includes not only what can be found from direct and remotely sensed data, but
also a priori information on the possible locations of debris, and predictive models
based on previous storm events, that can be used to constrain the overall complexity
of the detection problem. The result is an algorithm that can flexibly assimilate data
from a variety of sources, and declare its results in an appropriately intuitive manner,
and then summarize them in a standard interchange data format.

3.1.2 Sources and Types of Marine Debris

Marine debris are commonly defined, in approximate terms, as being any man-made
object discarded, disposed of, or abandoned, that enters the coastal or marine environ-
ment [39]. They can be made of a variety of materials, directly related to those com-
monly used by modern society: plastics, from industrial products (strapping bands,
resin pellets, plastic sheeting) to common domestic material (bags, bottles), as well
as other materials (metal, styrofoam, rubber, glass) that, like plastic, have a wide
range of uses [40]. They tend both to break down into smaller fragments and to be
worn away, but they do not biodegrade entirely. Marine debris span in size from
the millimetric size of resin pellets to entire sunken vessels [39]. Thousands of aban-
doned and derelict craft are presently close to the shoreline, in a multiplicity of states
(e.g., semi-submerged in the intertidal zone, or stranded on reefs or in marshes) [41].
When present in protected areas (e.g., lagoons), these shipwrecks may persist for
years, while exposed environments can force their disintegration, and litter thereby
generated may be distributed widely through multiple habitats [39, 42]. Marine de-
bris are commonly classified by source type into ocean-based and land-based [39].
The primary ocean-based sources are vessels (e.g., derelict fishing gears such as nets,
traps, buoys, lines lost by commercial fishing vessels and recreational boats, entire
containers from cargo ships in rough seas), but stationary platforms also play an im-
portant role since all items lost from these structures become litter (e.g., hard hats
and gloves, storage drums). However, the largest part of debris along the shoreline
comes from land-based sources [39].

Debris may be blown, swept, and washed out to sea after their accidental or
intentional disposal as domestic or industrial wastes on land or in streams. In normal
conditions, rain and snow melt-waters are the usual means by which these materials
are carried to a nearby river or canal, or even directly to the ocean. However, natural
disasters such as hurricanes, tsunamis, mudslides and floods are usually coupled with
devastating effects such as heavy rains, flooding, strong winds, high waves, and storm
surges [43, 44], leading to a peak of new deposition (in both intertidal and subtidal
areas) of marine debris, and an additional problem for regions already impacted by a
natural disaster. In fact, this abnormal amount of marine debris may create threats
to navigation, fishing activities, recreation, sensitive ecosystems, and generally to
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the environment and human safety [39, 44]. Effectively and quickly processing large
amounts of hydrographic data collected using commercial systems for detection of
marine debris would be highly advantageous to remediation operations [45].

3.1.3 Workflow Overview

The complex nature of marine debris demands that a coherent framework for the
detection task must take into account as much available information as possible.
From the spatial relationship between the marine debris distribution and explanatory
variables to an effective way to merge the results of different detection algorithms,
the vague definition in size, shape and material of the investigated targets demands a
technique that can synthesize all available data into a coherent decision. At the same
time, some degree of modeling and approximation is required to make the analysis
computationally attractive and sufficiently effective to be practical [46, 47].

The developed workflow is therefore structured in three stages: a prediction model
that provides a priori information to constrain the problem; a detection step to fuse
information into a probability map; and a data format and transfer step that allows
for simple transfer of results into further processing stages.

The prediction step analyzes the marine debris distributions in recent available
data sets, from which a forward predictive model for marine debris presence is devel-
oped. This predictive step provides the initial state for a Bayesian spatial hierarchical
model, but can also be used as a post-hurricane survey planning tool.

For detection, a target model was built postulating a simplified description of
debris properties, and a set of detection algorithms were developed to target different
possible characteristics of marine debris, detecting discrete objects which differ (e.g.,
protrude) from the surrounding seafloor, being close or connected to the bottom
[45]. The scope of these algorithms was constrained to analyze products commonly
available in existing post-processing software (e.g., bathymetric digital terrain models
and backscatter mosaics with associated data sets such as statistics derived from the
core data) so that the technique may be quickly inserted into existing workflows,
easing resource management in a response situation.

For data exchange, a data model was developed that provides a common vocabu-
lary for describing marine debris objects, which was found to be a particular problem
with data collection in the wake of Super Storm Sandy. Based on standard techniques
for geospatial data exchange, this model and its implementation, are readily imple-
mented in standard data processing packages, making it simple to transfer data from
the core algorithm into further processing steps.

The workflow was developed for storm response in general, but is illustrated here
on data collected in the wake of Super Storm Sandy, specifically around Jamaica Bay,
New York, ny, where there are appropriate bathymetric and backscatter data, along
with hand-picked marine debris locations to use as ground-truth for the results of the
detection algorithm. The area is also of interest to restoration efforts, since it has a
high density of objects in a heavily populated area.
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Figure 3.1: Study areas, and the best estimate track (associated with peak winds) of
the five hurricanes of interest for marine debris prediction models.

3.2 Case Studies and Data Sources

Super Storm Sandy was a natural disaster with unusual characteristics [1]. Starting
as a classical late-season hurricane in the Caribbean Sea, a complex evolution made
Sandy grow considerably in size, moving parallel to the coast of the United States
(Figure 3.1). After turning northwestward over much cooler waters, Sandy weakened
and started to lose its tropical characteristics about 45 nautical miles off Atlantic City,
becoming an extra-tropical cyclone (that is, relying mainly on baroclinic processes),
to make landfall near Brigantine, nj, around 7:30 p.m. on October 29, 2012. Because
of Sandy’s unusually large size, the New Jersey and New York coastlines were hit by
a catastrophic storm surge, accompanied by powerful damaging waves and enhanced
by the fall full moon period. The impacts of Sandy were widespread, with at least
650,000 houses damaged or destroyed, cars tossed about, boats pushed well inland
from the coast. Sandy represented a massive source of marine debris deposition for
impacted coastal areas. However, being relatively close in time, Hurricane Irene most
likely also influenced the debris distribution [48].
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Survey data collected after Sandy, concentrated in the Redbird Reef area (off the
coast of Delaware), and Jamaica Bay, New York, ny, were used to test the algorithms
under development. However, in order to generate the predictive models, information
from previous storm events was required. Three datasets were considered, two in the
Sandy-affected area, and a third in the Gulf of Mexico; specifically, the projects used
were:

• The noaa Marine Debris Program (mdp) dataset, mainly focused on intertidal
coastal areas (hereafter, sss-id), which was based on noaa ngs imagery ac-
quired during post-storm overflights, and follow-up shoreline survey [49] of the
Sandy-affected area. The data set is made up of almost 70,000 debris records:
52% identified via automated Object Based Image Analysis (obia) [50], and the
remaining targets marked via manual heads-up digitization by imagery analysts.

• noaa’s Office of Coastal Survey (ocs) dataset, which is a growing collection
of subtidal marine debris (sss-sd), mainly based on surveys using a variety of
acoustic sensors (e.g., Multibeam Echosounders, Side Scan Sonars) performed
by contractors. This preliminary data set (some processing is still ongoing)
was retrieved directly from noaa ocs. This data covers many areas of the
Sandy-affected region, but the focus here was on Jamaica Bay, New York, ny.

• The Gulf of Mexico Marine Debris Project (gommdp) data set, a large collec-
tion of marine debris items related to Hurricanes Katrina, Rita and Ivan, and
identified via side scan sonar during several surveys conducted in 2006 [51].

There are several differences between the gommdp and the Sandy area that in-
fluence the expected debris distribution. The former project area is quite flat, while
in comparison the latter is characterized by moderate bathymetric and topographic
relief. The complex geography of New York Harbor and Long Island Sound generated
quite distinct patterns for the maximum elevation of storm surge and peaks of strong
winds, while for Katrina these were almost coincident. Sandy also affected one of the
most densely populated areas along the East Coast, giving it a much higher potential
for debris creation due to the abundance of debris sources, while much of Katrina
effects were on rural or low-density suburbs [1, 52].

3.3 Predictive Model

The predictive model was developed to spatially constrain the marine debris detection
problem. Although such problems are notorious for having multiple possible solutions,
the objective here is to specify a likely solution that can be used as a prior for Bayesian
inference. In essence, the predictive model helps to identify the right haystack, and
the Bayesian inference finds the needles.

Based on the data availability of previous hurricane events, the correlation between
several possible explanatory layers collected in the wake of recent Gulf of Mexico and
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East Coast storms (like Katrina and Sandy) and the likelihood of generation and
deposition of marine debris was studied. Data related to the track and the intensity
of the storm, to the human environment in the area (which are sources of much marine
debris), and to the size of the effects (significant wave, storm surge, and so on) were
used as information layers [53]. The combination of these layers provided a means to
obtain a rough prediction, for a given storm, on where there is a larger likelihood of
being significant marine debris creation.

The outcomes of the predictive model become very useful when there are detection
algorithms that throw up a number of false positives. In such a case, the model results
are used to effectively tune back these algorithms, and thus provide better constraint
to the overall solution to the problem.

3.3.1 Spatial Analysis Tools

Spatial data are often characterized by a phenomenon, known as spatial auto-correl-
ation (sac), that occurs when the values of variables sampled at nearby locations
are not independent from each other [54]. In marine debris data, sac may arise
from a multitude of possible causes, both from intrinsic processes, such as debris size
and target-seafloor interactions, and in response to unknown (or partially known)
environmental drivers, e.g., non-linear relationships between predictors and dependent
variables that are modeled (erroneously) as linear, or failure in accounting for an
important environmental determinant that is itself spatially structured [55]. sac
often poses serious shortcomings for hypothesis testing and prediction by violating
the assumption of independently and identically distributed errors required by most
commonly-used statistical procedures [56]. In the absence of a perfectly correctly
specified model, sac cannot be accounted for by non-spatial models [57], and some
kind of correction, such as the one introduced by auto-covariate regression, is required
[58]. However, sac may also be seen as an opportunity since it provides useful
information for inference of a process [59].

The distribution of marine debris density over a seafloor area is a spatially-
distributed stochastic phenomenon. The density values represent a set of variates,
and the task is to decide whether there is any evidence that these variates are spa-
tially correlated. However, real scenarios such as the case studies usually present a
quite complex hierarchical structure that cannot be simply modeled as regular or clus-
tered point processes, and they may exhibit different spatial pattern characteristics
at different scales [60]. The verification of the hypothesis that the debris locations
tend to cluster rather than following a complete spatial randomness (csr) process,
under which their patterns are realizations of a Poisson point process, is thus an im-
portant preliminary step. Dedicated methods can be classified as global (throughout
the whole study region) or local. For global methods, there are several established
procedures (Moran’s I plots, Geary’s C correlograms and semi-variograms), in which
a measure of similarity or variance of data points is plotted as a function of the dis-
tance between them, to check whether spatial correlation is likely to impact the data
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analysis [61]. Morans I varies between −1 and +1, and a value close to 0 indicates a
random pattern or absence of spatial autocorrelation [62]. Calculation of the z-score
provides a means to evaluate the intensity of spatial clustering, looking for cluster-
ing lags with statistically significant peak z-scores (based on a randomization null
hypothesis). Given the kind of pattern of this study, the focus of most algorithms
is on a small, local level of clustering, and this method allows the correct size of the
analysis to be determined from the data. Local methods such as Local Indicator
of Spatial Association (lisa) and hot-spot analysis, when used in conjunction with
Moran’s I applied globally, deepen the knowledge of the processes that give rise to
spatial association, enabling the detection of local pockets of dependence that may
not show up when using global methods [63]. lisa is a local Moran index proposed
by Anselin [64]. This method highlights clusters as well as possible outliers, a low
value surrounded by high values (low–high) or a high value surrounded by low values
(high–low). The hot-spot analysis identifies local spatial clusters of statistically sig-
nificant high (hot spot) and low (cold spot) number of debris targets for a grid cell
by calculation of the Getis-Ord Gi∗ statistic [65].

The popular K-means algorithm was also adopted as an exploratory tool, applying
a cluster analysis to identify possible structure between the available data in the
absence of category information [66]. The selection of the number of groups was based
on the pseudo F-statistic, a ratio reflecting within-group similarity and between-group
differences [67].

3.3.2 Model Implementation

sac occurs at all spatial scales (from meters to dozens of kilometers) for many rea-
sons. Since these reasons are mostly unknown, one cannot readily derive a spatial
correlation structure for an entirely new and unobserved area, although it is possible
to derive predictions by interpolation for missing data within the study area (e.g., by
using a Gibbs Sampler) [68, 69]. When models are projected into different areas the
handling of spatial auto-correlation is quite problematic, sometimes even impossible.
Extrapolation in space can only be based on the coefficient estimates, not on the spa-
tial component of the model [46, 62]. Extrapolation is further complicated by model
complexity: the use of non-linear predictors and interactions between environmen-
tal variables usually increases model fit, but with the price of compromising model
transferability in time and space. Given such intrinsic limitations, a predictive model
was created with the main aim of providing a reliable initial state to the Bayesian in-
ference; however, the evaluation of areas where the presence of marine debris is more
probable, coupled with considerations related to the economic relevance of specific
waterways, may also help to effectively prioritize the areas to survey and the data
to process, speeding up identification of detected possible targets and their eventual
removal. A limited number of predictive debris models have been recently developed:
the web-based Hurdet model [70]; usace hazus-mh models [71, 72]; and, the Ma-
rine Debris Distribution model of the Gulf of Mexico, from the noaa Marine Debris
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Data Product Predictor Source
H∗ Wind Surface Wind Analysis Wind noaa
Experimental Extratropical Surge
and Tide Operational Forecast
System

Storm surge noaa

NGDC 3-Arc Second Coastal
Relief Model

DEM noaa

International Best Track Archive
for Climate Stewardship

Hurricane best-track noaa

Global Self-consistent,
Hierarchical, High-resolution
Geography Database

Shoreline noaa

Natural Waterway Network Waterway usace
Topologically Integrated
Geographic Encoding and
Referencing

Population Census Bureau

Table 3.1: Proxy sources for marine debris prevalence model predictors.

Program (mdp) [44]. While the first two are focused on terrestrial debris, some of the
findings and the results from the mdp model have been adapted and incorporated in
the present model, attempting both to generalize the approach (to increase flexibility)
and to cast the modeling results to feed a probabilistic algorithm for marine debris
detection.

A list of intuitive marine debris predictors (Table 3.1) was created, informed by
comparison with existing similar work, and data availability. This latter criterion is for
model flexibility, avoiding a model based on peculiar predictors that, although highly
explanatory of debris presence, will likely not be available in case of natural disasters
in different areas, as well as in the immediate proximity of the event. The selected
predictors can be clustered in two groups: those related to the storm energy (wind,
storm surge, bathymetric profile, etc.) and those capturing the spatial distribution
of debris sources (concentrations of highly populated human areas, waterways, etc.).
The intuition behind such a choice is that coastal urban areas impacted by high storm
energy should have larger amounts of anthropogenic debris, due to higher potential
for debris creation and mobilization.

The wind-based predictor was created by summarizing into a single layer, repre-
senting the peak intensity, the surface wind analysis of tropical cyclones produced
by the noaa Hurricane Research Division as part of the H∗ Wind Project [73], a
project that merges a variety of coastal and inland data from land, space, and marine
platforms. Data from the Extratropical Surge and Tide Operational Forecast Sys-
tem [74], a new generation hydrodynamic modeling system using the Advanced Circu-
lation (adcirc) model, was used as storm surge predictor. The National Geophysical
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Figure 3.2: Moran’s I statistic, globally applied, calculated for the case study data
sets. Red dot indicates the first peak of the associated z-scores.

Data Center1 3-Arc Second Coastal Relief Model [75], integrating bathymetric and
topographic information from a variety of data sources, was used to explore the re-
lationship between debris and depth. The best tracks for the hurricanes in the study
were retrieved from noaa’s International Best Track Archive for Climate Stewardship
project [76], collecting the historical tropical cyclone best-track data from all available
Regional Specialized Meteorological Centers and other agencies [77]. The distance of
each cell in the lattice grid has been calculated having as reference the World Vector
Shorelines, present in the Global Self-consistent, Hierarchical, High-resolution Geog-
raphy Database [78], while for the waterways the usace Natural Waterway Network
was adopted [79]. Finally, a population index was derived from the 2010 census
Topologically Integrated Geographic Encoding and Referencing product [80].

A classic ordinary least squares [62] was adopted to create an equation relating
marine debris density (dependent variable) to the selected set of explanatory variables.
Exploratory regressions were used to find a well specified model by evaluation of
all the different possible combination of explanatory variables, balancing statistical
significance, redundancy and multi-collinearity [46, 47, 62]. The balance was mainly
evaluated by comparison of Adjusted R-squared, Akaike Information Criterion (aic)
and Variance Inflation Factor (vif) values [46,47].

3.3.3 Exploratory Analysis of Available Data

Moran’s I statistic, which is used to test the null hypothesis that the spatial autocor-
relation of a variable is zero, was applied globally to the study case data sets. The
results are presented in Figure 3.2, with the first peak of z-score plotted as a red dot.

The results from lisa and hot-spot analysis are presented as Pane A and B in
Figure 3.3 for the gommdp data, in Figure 3.4 for the sss-id data, and in Figure 3.5
for the sss-sd data; while Pane C was used to spatially identify the areas resulting by
the grouping analysis, performed using K-mean algorithms and based on the pseudo
F-statistic to identify the parameter for the number of groups: two for gommdp and
sss-id data sets, three for sss-sd data set. For this last, a plot with the resulting
inter-group relationships is presented in Figure 3.6.

1Now National Centers for Environmental Information

55



Figure 3.3: Moran’s I statistic, locally applied (pane A), hot-spot analysis (pane B)
and grouping analysis (pane C) for the gommdp data set.
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Figure 3.4: Moran’s I statistic, locally applied (pane A), hot-spot analysis (pane B),
and grouping analysis (pane C) for the sss-id data set.

Figure 3.5: Moran’s I statistic, locally applied (pane A), hot-spot analysis (pane B),
and grouping analysis (pane C) for the sss-sd data set.
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Figure 3.6: sss-sd grouping analysis outcomes between debris density (“deb-
density”) and predictors: distance from the shoreline (“distcoast”), maximum
wind (“wind”), distance from the urban area (“disturbarea”), distance from wa-
terway (“distwaterway”), maximum storm surge height (“stormsurge”), popu-
lation density index (“popdensity”), and average depth (“depth”).
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The resulting Moran’s I values show a similar trend for the gommdp and the sss-
sd data sets, with peaks at 3.5 km and 4.5 km respectively, but lower values in the
sss-id data set (although with a consistent peak at 4.5 km). Such a difference could
be explained by the fact that restoration efforts are more likely to have been applied in
the intertidal zones due to their accessibility. The Getis-Ord Gi∗ test identified several
clusters of points that have higher values than expected by chance. For the gommdp
dataset, the analysis results suggest a relationship between the Hurricane Katrina
track, urban areas and hot-spots of marine debris density (Figure 3.3). Several hot-
and cold-spots are also present for the Sandy datasets (intertidal debris in Figure 3.4,
and subtidal debris in Figure 3.5), although relationships with tracks and urban areas
are less visually evident. The results from the hot-spot analysis are compatible with
the lisa outcomes, and only a very limited number of possible outliers are present.
An interesting result from the grouping analysis is the different number of groups
(three rather than two) for the sss-sd data set. As is clear in Pane C of Figure 3.5,
the anomaly is spatially localized (the results of the grouping analysis are expanded
in Figure 3.6 for reference) and almost exactly matches with an area assigned to a
specific contractor. Thus, it is possible to speculate that this is most likely due to
different (and likely stricter) criteria being followed in the target detection analysis by
this contractor, or within this area. Consequently, the debris distribution in this area
was removed from consideration within the remaining analysis (although the causes
and procedures behind this difference are worthwhile of additional investigation).

3.3.4 Predicted Debris Distribution

After an exploratory regression based on the seven predictors listed in Table 3.1, both
study areas exhibited similar results, indicating that storm surge, population density
index, and distance from urban areas are generally good predictors of marine debris
presence (R-squared higher that 0.5). The addition of other available predictors does
not provide significant contributions to the R-squared values, adding decrements in
terms of aic and vif values. Using the resulting model parameter coefficients, a
prediction of debris distribution for the areas covering is presented in Figure 3.7 for
the sss-sd data set, and in Figure 3.8 for the gommdp data set.

The model outcomes highlighted higher likelihood of debris presence in areas that
received both higher wind energy and storm surge water elevations during hurricanes,
and which are proximal to more developed and populated urban areas. However, it
is likely that not all of the drivers for marine debris generation have been captured.

Addition of similar rich databases would help in obtaining a clearer picture of
how individual characteristics of hurricanes interact with human land use to generate
various types and degrees of marine debris deposition. In fact, this deposition may
or may not occur, or occur to varying degrees, depending upon individual hurricane
characteristics (e.g., category, breakpoint, maximum wind speed, height of storm
surge, and path after landfall). Landfall in a populous area, a post-landfall trajectory
upriver toward a headwater region, or a relative slow speed of passage and others
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Figure 3.7: Predicted distribution density of marine debris in the sss study area.

Figure 3.8: Predicted distribution density of marine debris in the gommdp study
area.
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can cause more damage and lead to increased marine debris. The different intensities
and tracks for the hurricanes affecting the study areas are clear examples of how each
storm-like event has its own peculiarities.

A practical difficulty common to these and similar data sets is the complexity
involved in distinguishing between anthropogenic and natural, storm-generated and
pre-existing targets. In order to make the analysis possible, it was assumed that
each dataset provides a representative picture of the distribution of storm-related
and anthropogenic marine debris. The model also relies on the assumption that the
distribution of marine debris objects is essentially static, even months after the event
occurred, so that it can use data sets collected variable amounts of time since the
event. This is increasingly likely to be untenable as a function of the time passed
since the event or if another storm-like event occurs after data set collection.

The seven predictors used do not completely capture all the possible causes of
concentrations of marine debris. For instance, areas with particular activities (e.g.,
recreational marinas), specific land use in the neighborhood such as dumping areas,
and strong energy impacts of wave run-up effects might behave differently. Additional
predictors capturing such causes might be evaluated in future studies, but with the
criterion of maintaining the model’s spatial portability, this might be challenging.

3.4 Detection Model

Given that “marine debris” does not have a very good definition, a slightly more
sophisticated approach than the ones usually applied in related fields of research was
required (Figure 3.9). The overall idea here is that a selection of detection algorithms,
each one not necessarily reliable when used on its own can together provide a more
reliable output that can be used to provide a robust indication on where marine debris
should be located.

The three primary considerations that were given weight in building a solution to
this problem were:

• What products to use as data input (and their collection requirements);

• How to do the initial detection (i.e., selection of detection algorithms); and

• How to fuse together the outcomes of different algorithms.

3.4.1 Data Input and Related Collection Requirements

For inputs, only hydrographic standard products were considered. This means that
the approach will not require the acquisition of particularly “exotic” data, which is
mainly driven by the design goal of being able to work in a storm-like scenario, when
a disaster response is in progress, and the users of such an approach will not have
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Figure 3.9: Diagram of the three sub-problems for the marine debris analysis theme.
The core topic of the research is represented by the detection model (in orange).
It takes hydrographic data products as input and provides a list of marine debris
candidates based on the fusion of the outcomes of several detection algorithms.
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time and resources to do anything beyond what is strictly necessary. Conventional
bathymetry and backscatter are considered to be the most likely available datasets.

The data used must meet some requirements, however, for the process [45] to be
successful. In particular, the acoustic system used should be fully understood, with
particular attention to the internal backscatter processing, otherwise the appropriate
corrections cannot readily be made. In addition, the system used to collect the
data should be calibrated, and the resulting calibration parameters correctly applied
(in real time or post processing), or the results may be misleading. Finally, the
environment should be properly characterized (e.g., absence of issues with the sound
speed profiles, correct absorption coefficients, etc.) for the corrections being done to
be effective.

System calibration is mainly required by the fact that elements in the receive array
do not usually have absolutely identical characteristics or mounting position [81],
and such distortions could be significant for some algorithms. Similarly, any signal
distortion of the backscatter time series collected around the seafloor detection point
should be reduced or avoided.

Where available, pre- and post-disaster dataset comparison can be powerful. How-
ever, proof that the seabed changes observed (e.g., presence of marine debris) are not
related to instrumental and integration artifacts requires confidence in the absolute
accuracy of both the bathymetric and backscatter output of the integrated sonar sys-
tem [82, 83]. Similarly, smaller objects require higher accuracy of calibration, and
pre-existing datasets may not achieve this goal; care in comparison is therefore war-
ranted.

Different systems have different achievable [83] (as well as theoretical) resolutions,
and assessment of this is essential in data or system selection, and in evaluation of
results. The system resolution is particularly important; for mbes systems, this is
mainly a function of the beamwidth and pulse length [84], while for phase measure-
ment systems, the resolution can be finer than the beam footprint [82]. Similarly,
the type of beamforming and bottom detection can be important considerations,
particularly the availability of high-density processing modes [85, 86] or multiping
capabilities [82]. Uniformity of data density across all of the datasets is particularly
important, since a spatially varying density can reduce the reliability of detection for
small objects [87], as is motion compensation for the mbes, which can otherwise lead
to variable density. This is particularly true of yaw stabilization, especially when
surveying at low speed in order to maintain along-track data density [87]. Increasing
along-track data density does not necessary imply better data quality, but it often
provides a wider margin for data filtering and statistic tools application.

mbes along-track beamwidth is usually much wider than that used by conventional
sidescan sonars, so that sidescan imagery tends to be better quality [88]. However,
unless the sidescan is hull-mounted (which has its own difficulties) variable distor-
tions are usually introduced due to the uncertainty in the towing fish position and
inapplicability of the flat-seafloor assumption. A better solution, when feasible, is
to integrate accurate mbes bathymetry and high resolution sidescan imagery. In
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such a case, the sidescan-based mosaic can also take advantage of being properly
geometrically corrected by using the mbes-based dtm.

Many of the products used in the processing scheme developed are constructed
from combinations of multiple survey lines; minimizing the total propagated uncer-
tainty (tpu) is therefore important to ensure that the data are free of artifacts that
could mask the presence of marine debris, or prompt false positive detections. Cor-
rect patch test procedures [89,90] and identification of any residual dynamics [91] are
therefore essential. Combination of individual sources into the product can also limit
the scale of change visible to the combined accuracy of the product, rather than the
individual accuracies of the sources [82].

The characteristics of the water column change continuously both in time and
in space [92]. As a consequence, there is not a simple direct relationship between
the time since, and the distance from, the sound speed measurement in use and
its applicability. The measurements of sound speed must be taken often enough to
capture the actual spatial and temporal variability [93, 94].

Finally, there is no substitute for a survey team familiar with the sensor in use
and its capabilities; some systems may have specialized operational modes [95] which
might be useful for surveys targeted towards marine debris detection, for example.
The workflow will naturally take advantage of well-collected and calibrated hydro-
graphic data, but marine debris detection will still be possible, with expected in-
creased false alarm rates, even if not all best practices are applied.

3.4.2 Detection Algorithms

Selection Criteria

A comparison of the sss-sd data set and the original survey data was used to estimate
the criteria used by the analyst for defining the presence of possible marine debris.
From the analysis of the targets selected so far within the sss-sd data set, several
common selection patterns emerged [45]. For instance, a first group containing a
rounded shape and/or a jump in seafloor reflectivity was common to many of the
several hundred targets examined. A second group was based solely on bathymetry
evaluation. A third group comes from an integrated analysis of the dtm and the
acoustic backscatter. Finally, although such data can now be readily collected on
many systems, there are no examples of debris selection based on water column
data, although the extent of availability of this data (and appropriate tools) to the
observers is unknown. It appears that operator debris detection was mainly based
on the bathymetry and the reflectivity of the seafloor, assuming that any deviation
from the “natural average background” was a hint of possible debris. From this
observation, and given the intrinsic complexity of the targets, it is likely that a single
algorithm will not be successful for robust marine debris detection. The proposed
solution is therefore based on multiple algorithms to process different sources (mainly
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bathymetry and backscatter from acoustic systems, but easily extendable to water
column data, as well as lidar data), fused together so as to be adaptive to the
environment, the context, and a priori knowledge (if available) of the possible targets.
The goal was to use a collection of algorithms working at different levels (e.g., using
per beam, single swath, snippet and pixel level operators), which were then fused by
the core engine. One of the primary advantages of this approach is that operating
over different data with independent algorithms can reduce inter-algorithm cross-
correlation and therefore the probability of false alarm [45].

Development was also driven by concern about false positive generation in the
(large) areas where there are no real targets based on parameters extracted in areas
with targets. In essence, applying a single algorithm globally can be problematic.
Therefore, the algorithm is designed to break the overall area into local sub-areas, and
then adapt to the conditions locally in the detection structure. This extra structure
allows standard algorithms to be used without extra complications, and leads to more
local feature extraction and adaptation.

Backscatter-based Algorithms

For the backscatter mosaic, as in many existing algorithms, target detection is based
on the observation that denser material (often anthropogenic) makes debris returns
much stronger than the surrounding background. However, the common approach to
object detection of simple thresholding (e.g., based on the premise that in a mosaic
the object return is brighter than the background) was modified since it tends to
fail when the background is textured (i.e., simple detectors are not aware of image
correlation). This algorithm is based on an acoustic backscatter mosaic, and takes
advantages of previous noaa-sponsored work at the Joint Hydrographic Center to
properly geometrically and radiometrically correct the collected data [45, 96]. The
resulting mosaic is segmented into areas with similar reflectivity values through a
clustering analysis, and a histogram of backscatter values as a function of angle of
incidence is then computed for each clustered area (effectively forming a bivariate
histogram). A simple Bayesian classifier is subsequently used to identify areas in
each segment where the statistics of a small window do not match that of the overall
background distribution (as characterized by the appropriate marginalization of the
histogram). Areas of low probability of background membership are identified as
potential marine debris. Subsequent edge detection and hierarchical filtering are
applied to remove misdetections along the mosaic boundaries (Figure 3.10) [45].

The backscatter information content, expressed as a variable angular response, is
also used in a model-based detection algorithm (Figure 3.11). The angular response
for each clustered area is formed, as is the angular response for each sequential series
of pings, in both cases averaging to reduce levels of noise and improve the estimated
statistics. These local angular responses capture angular variability that is lost in the
process of generating a mosaic [45].
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Figure 3.10: Stages in the Bayesian analysis of backscatter anomalies. The sub-
images show, left to right: the geometrically and radiometrically corrected backscatter
mosaic; the clustered mosaic (clustering is based on simple backscatter values in
the mosaic); the probability map for membership of each analysis window in its
surrounding background (high values indicate lack of membership); edge detected
segments indicating potential objects; and hierarchically filtered objects showing those
likely not associated with edge effects in the mosaic. The limited number of detections
is promising (from the point of view of limiting false alarms), and corresponds well
to operator inspection of the mosaic.
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Figure 3.11: Bivariate plot of acoustic backscatter-derived features computed from
a half-swath patch of mbes data. The red/green boxes indicate half-swaths having
distinctly different behavior (as measured by the slope and intercept of a line fitted
to the acoustic backscatter angular response in the patches) from the other patches,
an indication of anomalous behavior. Use of multivariate combinations of features
can help to clarify detections and reduce false alarm rates.
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Finally, adaptations of well-known general-use image processing techniques to
marine debris detection have been developed.

Bathymetry-based Algorithms

For the dtm, a few spatial indices were developed as proxies for discontinuities, which
are interpreted as potential targets.

In particular, an algorithm was developed based on the Combined Uncertainty and
Bathymetry Estimator (cube), a weighted depth estimation algorithm that processes
large and dense bathymetric data sets, and which addresses issues such as efficiency,
objectivity, robustness and accuracy [97]. The nodes independently assimilate prop-
agated soundings to form depth hypotheses which are then tracked and updated as
more data is gathered. cube manages groups of soundings that are mutually in-
consistent, but internally consistent, by segregating them in alternate hypotheses,
avoiding cross-contamination of estimates [97]. The state of knowledge about the
data is summarized for each estimation node through a list of depth hypotheses.

The algorithm developed here uses cube’s auxiliary products for marine debris
detection (Figure 3.12). The map of hypothesis counts clearly shows areas of difficulty
in the gridding process, and, together with cube’s estimate of the correctness of the
hypothesis selected by the disambiguation engine (known as hypothesis strength) [98],
may be used as a proxy for debris presence. Low values of hypothesis strength are used
to identify a node depth reconstruction that is sufficiently robust to be reliable [99].

Additional Remarks

For both backscatter and bathymetry, the adoption of classical estimation techniques
usually generates point estimate or a confidence interval, which becomes important
when fusion of target information coming from different products is attempted. In
order to provide appropriate distributions for exploitation, Bayesian methods were
adopted since they permit use of multiple-source asymmetric and discontinuous poste-
rior distributions that may be transferred into further analysis. A hierarchical scheme
is proposed where a series of modeling tasks are implemented through a probabilistic
model, casting the debris detection problem as one of estimating properties of the
posterior distribution, which represents the probability of objects occurring given the
observed data products.

3.4.3 Fusion Approach

The predictive model developed indicates areas of higher likelihood of there being
debris. The information obtained from the various detectors in use represents an
estimation of how likely it is that there will be a detection given that there is an ob-
ject present. Unfortunately, neither is the desired information, which is to know how
likely it is that there is an object given the detections observed. A Bayesian analysis,

68



Figure 3.12: Examples of additional useful metrics related to the statistical bathymet-
ric representation of two objects (from left to right, bathymetry, standard deviation,
hypothesis count, and hypothesis strength).
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however, does allow this inference. The Bayesian hierarchical model provides a prob-
abilistic structure that can be used to combine together detector and predictive data,
including any other available sources, such as the enc. The outcome is an estimate
of the probability of there being an object at any point, given the observations and
the structuring information from the predictive model.

Bayesian methods have a very strong, and flexible, mathematical framework, and
very well understood mathematical structure and supporting computational methods.
This allows, in addition to specification of a priori information from the predictive
model, direct specification of spatial auto-correlations. This can be used to model
behaviors in detectors where true objects tend to generate multiple spatially coherent
detections, while false detections do not, which can make the detection process more
robust.

Hierarchical Spatial Modeling

In order to control the complexity of the detection problem, the algorithm developed
uses a hierarchical spatial model, which allows complicated dependencies to be fur-
ther broken down into problems that are simpler to evaluate. Although a hierarchical
model can be flattened by marginalization/integration, there are multiple advantages
that have driven the selection of a hierarchical form: ease of interpretation and spec-
ification of the various components, facilitation of the model fitting step, and proper
propagation of the model uncertainty based on the reconnaissance of the uncertainty
in each modeled unknown. In particular, a hierarchical model was adopted that treats
the debris presence data as a realization of a spatial point process, whose intensity is
driven by local features based on the outcomes of a set of target detection algorithms.

In this case, each detector operates on hydrographic data products, and generates
a binary decision on whether debris is expected to exist at a point. The fusion
problem is therefore defined over a set of binary indicators, and generates outputs
from a binary class C = {t, n} for presence or absence of a debris object. Similar to
other classification models, the classifier produces an intermediate step that estimates
membership probability to the “target” class for each cell. The application of a
different threshold to such an estimate can be used to tune the classifier behavior,
directly influencing its balance between hit rates and false alarm rates. For notational
clarity, the label set L = {Y,N} is specifically introduced for the detector output, to
distinguish predictions from the actual class. The detector may reach four possible
states, as summarized through the contingency table (Figure 3.13).

The classifier states can be combined in various classification metrics, such as:

• The true positive rate (ρtp), or sensitivity, evaluated as

ρtp = Ntp/Np (3.1)

where P represents the “real” total positives.
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Figure 3.13: Contingency table and notations adopted for the marine debris detector.

• The specificity, S, directly related to the false positive (or false alarm) rate (ρfp),

S =
Ntn

Nfp +Ntn

= 1− ρfp (3.2)

The performance of the proposed detector can therefore be depicted using two-
dimensional Receiver Operating Characteristics (roc) graphs [100]. In these graphs,
a diagonal line (i.e., y = x) is added to represent the strategy of randomly guessing
a class. A single scalar representing the portion of the area of the unit square, called
the Area Under the Curve (auc), is commonly used to compare classifiers. Since
random guessing produces an area of 0.5, no realistic classifier should provide a value
less than 0.5.

The debris data are necessarily categorical: either binary (presence/absence) or
abundance (number of objects at a given location). The developed workflow focuses
on binary data, seen as the result of the fusion approach, that may be easily fit-
ted using logistic regression, which is straightforward to implement using standard
maximum likelihood [101]. However, like all linear models, logistic regression is in-
compatible with sac observations since it assumes independence of errors. Thus,
among several possible approaches for modeling sac in binary data, the auto-logistic
approach [55, 102], which extends the logistic model to allow dependence between
nearby observations [55], was selected. Common past objections against the use of
auto-models seem to be due to incorrect model implementations, providing a general
conclusion of validity for auto-model analysis of sac data [103].

Fitting the auto-logistic model can be difficult since the full likelihood is only
known up to a (intractable) constant [104]. Although there are approximate methods
to fit the auto-logistic model using maximum pseudo-likelihood estimation (mple),
a simple Bayesian implementation of the auto-logistic model was adopted since it
avoids many issues with mple including observed inaccuracies [105].
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This solution can be used simultaneously for model fitting, based on covariates,
and for making predictions about unsurveyed parts of the study area, and has been
implemented previously in a Bayesian framework adopting the Markov Chain Monte
Carlo (mcmc) methodology pioneered by Besag [55] and refined by Geman and Ge-
man [106]. This methodology constructs a non-normalized posterior distribution for
the unknown parameters and any missing observations (which are treated identically
to parameters). The resulting distribution, conditional on the observations, is sam-
pled according to one of the possible mcmc procedures (e.g., the Gibbs sampler)
that guarantee that certain sequences of dependent samples (generated as successive
states of a particular Markov chain) will converge to the target distribution. This
Bayesian approach allows for a more flexible incorporation of possible complications
(observer bias, missing data, and different error distributions) at the expense of higher
computational requirements.

Case Study

Jamaica Bay, an area in the East Coast of u.s. affected by Super Storm Sandy, was
selected as a test site. This area has optical imagery, bathymetry, and sidescan, as
well as ground truth object detections done by hand (Figure 3.14). The area also has
enc coverage, and is covered by the predictive model.

Figure 3.15 focuses on a particular area, in the southwest region of Jamaica Bay,
showing the marine debris prediction as a hot spot map. The map shows strong
debris prediction in particular zones. Part of this prediction is related to there being
anthropogenic structures in the area that can feed into the water there (or result in
extra effects due to storm surge, for example).

Since the system is naturally scalable, it is possible to zoom in a particular sub-
area (Figure 3.16), so that is possible to increase the map resolution without being
too computationally expensive. Figure 3.16 shows a good correlation between the
high peaks in the hot spot probability map and where the human analyst selected
objects.

In order to assess the benefit of adding spatial context, the detection outcomes
from auto-logistic and logistic regressions were compared. The comparison was per-
formed separately on two data sets: first, a data set was artificially created, injecting
sac as described in Bardos et al. [103], and second, the algorithm was applied to the
Jamaica Bay data set. The resulting roc graphs for both data sets are presented in
Figure 3.17. The graphs for the artificial data set present auc values of 0.923 (logistic
regression) and 0.940 (auto-logistic regression); while, for the real survey data set,
aucs of 0.862 and 0.880 characterize the logistic and the auto-logistic regressions,
respectively.

The auto-logistic implementation therefore outperformed the basic logistic model
in removing residual auto-correlation. Thus, the auto-logistic model provides a bet-
ter description of the observed clustering of objects, since the logistic model cannot
represent clustering at all unless it is present in the covariates. Furthermore, the roc
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Figure 3.14: From top to bottom, bathymetry, backscatter mosaic, and analyst-based
detection (with land/sea mask from the enc) from Jamaica Bay, New York, ny.
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Figure 3.15: Hot spot map generated by the workflow for a particular area of Jamaca
Bay, New York, ny.
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Figure 3.16: Results of the hot spot analysis in Jamaica Bay, New York, ny, with
the ground-truth positions of the marine debris designed by human analysts showed
as blue dots.

Figure 3.17: roc curves for artificial data (pane A) and real survey data (pane B),
for both logistic (no spatial context) and auto-logistic regression models.
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plots indicate better overall predictive performance by the auto-logistic model due
to much higher true positive rates at small false positive rates, although the logistic
model slightly outperforms at low (artificial data set) and intermediate (real data
set) specificity. Classifiers appearing on the left-hand side of a roc graph (near the
vertical axis), are usually evaluated as more “conservative”, since they make positive
classifications only with strong evidence (so they make few false positive errors) [100].
Since the marine debris detection domain is usually dominated by large numbers of
negative instances, performance like the auto-logistic regression becomes more inter-
esting.

3.5 Target Management and Data Exchange

3.5.1 Marine Object Manager

The combination of information present in bathymetric and imagery-based products
is a key requirement for any modern feature-detection approach that aims to be
adopted in coastal areas where the seafloor is deep enough that optic means are not
reliable. If the data sources and the processing involved are correctly weighted in a
fusion algorithm, the detection task can be extended beyond a simple binary (pres-
ence/absence) decision to provide a meaningful metric that evaluates confidence in
the presence of new features. In combination with other existing information (such as
that present in encs), this metric can become a proxy for areas with high probability
of change (for features to be either added or removed) with respect to the baseline
knowledge of the area. The dual, and partially contradictory, goals of such a system
are to highlight areas with high probability of change, and to use the existing nau-
tical documentation as a spatial filter to limit computational or operational resource
consumption on known features. Determining an appropriate balance between these
is an interesting challenge. However, it is recognized that the algorithms developed
are never going to be perfect (very few algorithms actually are).

Based on such considerations, this work has developed an approach for how to
effectively assist data analysts in combining the results of different target detection
algorithms, as well as in comparing such results with existing features present on
encs and in geographic databases (e.g., spatial database management systems). The
main goal is to help the analyst in focusing on specific areas (with higher likelihood
of new features), prioritizing them on safety-of-navigation criteria, and reducing the
common pitfall of subjectivity in the processing workflow. Although mainly aimed
at rapid response to the short-term increase in marine debris deposition related to
major events like hurricanes and floods, the approach is also well suited for different
scenarios such as reducing the “ping-to-chart” time.

Some prototype tools were therefore built in parallel with this workflow, with the
expectation that there will always be a human operator in the loop. Objects can
be detected very easily, but identifying whether they are natural or marine debris
is not necessarily straightforward for an algorithm (Figure 3.18), without a level of
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Figure 3.18: Examples of “natural” (left) and “marine debris” (right) candidates
provided as output of the detection model.

sophistication in the algorithm that makes it very slow. Even the complexity of
determining whether features are natural or artificial is variable, so the goal here is
to provide tools to accelerate the process, supporting the human operator. Thus, for
example, tools to provide useful visualization of the results of the analysis have been
examined, as well as tools to assist in extraction of shape both automatically and by
hand (Figure 3.19).

3.5.2 Marine Debris Markup Language

Algorithms that generate good results that go nowhere are not particularly useful. A
specific consideration for this project was therefore to ensure that the results could be
generated in a form that is exchangeable with other researchers and those responsible
for responding to a storm event. After a marine disaster, many agencies conduct
surveys collecting information that may be related in different ways to the presence
of marine debris. The data acquired in these surveys can be used for planning pur-
poses, operational support, and to manage risks associated with marine debris. Most
surveys adhere to standards and best practices in creating outputs, but there is cur-
rently a lack of standardization for debris detections, which are typically delivered
in unstructured cad and gis files. Although flexible, this lack of structure makes
integration and interoperability with these files difficult. This make sharing marine
debris data difficult.

A collaboration with noaa’s Marine Debris Program was therefore undertaken to
jointly evaluate how this data can be better managed; the result is a Marine Debris
Markup Language (mdml).

This model provides a common vocabulary to describe marine debris based on
sound geo-information management principles and practice, which could be used to
provide guidelines for the acquisition of marine debris data in future events. The
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Figure 3.19: Example of an auxiliary tool provided to the analyst to define the shape
of the target. Here, the analyst can define the shape of the object interactively; other
techniques to assist in semi-automatic shape extract from objects have also been
investigated.

mdml template is implemented using a gml2-aware xml3 schema that is the lingua
franca for geographic data exchange (Figure 3.20). However, in principle the data
model can be implemented in any gis and transferred via an open gis data exchange
format (Figure 3.21). Because the schema uses the Open Geospatial Consortium
gml Encoding Standard and the gml Simple Feature Profile (Level Zero), many
applications are already able to process mdml data files, thus supporting intra- and
inter-community interoperability.

Building onto a standard feature profile provides the opportunity to build some-
thing that is easily reconstructed in standard ogc tools, such as gdal, etc. The
advantage is that output that uses the Marine Debris Markup Language can be read-
ily imported in other tools, without any extra effort.

3.6 Summary

The problem of marine debris identification is complex, particularly because what
is being sought is not particularly well defined (i.e., there is no real good definition
of what marine debris really is). Thus the workflow developed assumes having to
deal with this variable situation. The workflow defines a selection of algorithms that,
although not entirely reliable individually, together permit fusion into a solution that

2Geographic Markup Language.
3Extensible Markup Language.
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Figure 3.20: Interactions between the community interested to marine debris data
and users of the Marine Debris Markup Language (mdml). mdml uses several of the
primitives defined in gml Core Schemas as restricted by gml Simple Feature Profile
(Level Zero).

is reliable and useful. Given this structure, extensions to the algorithm for better
predictive models and detection algorithms are obvious.

As described in the previous sections, the current workflow provides a way to
structure a complex problem by merging the output of different algorithms (includ-
ing prior constraint information) into a probabilistic hot spot map that is easy to
understand. A partially open question is whether including additional detection al-
gorithms actually improves the performance. The current conjecture based on some
testing is that is not always the case. These results can be explained by the fact that
the more metrics that are generated from the algorithms and then used in the fusion,
the more likely it is that they cause more confusion in the detection that is gained
from having the extra algorithm included. What is desired is a limited number of
independent algorithms that provide independent views to the data.

The Bayesian approach used here allows for a more flexible incorporation of possi-
ble complications (observer bias, missing data, and different error distributions) and
prior beliefs at the expenses of higher computational requirements. Furthermore, a
good understanding of the influence of prior distributions and convergence assessment
of Markov chains is crucial to properly evaluate the method’s results. The scalability
of the fusion technique permits its straightforward extension to additional detection
algorithms for ad hoc created data products, with expected improvements both in ro-
bustness against outliers and in detection performance. Given the flexibility of such
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Figure 3.21: Details of the mdml implementation: each class, as the DebrisCollec-
tion class in the diagram, is derived from gml abstract elements that have proper
counterparts within other spatial object models (e.g., esri Data Model).
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a framework, it is possible to extend the detector with a set of ad hoc hydrographic
products. Although the probability of false alarm based on a combined analysis of
multiple data sources is expected to be generally lower than when a single source is
used, there are particular cases where a particular object might only be observable
within a single data source. For example, a semi-buried target, or one with a flat-
tened shape, might only be visible through acoustic backscatter. A careful analysis
of the benefits of different algorithms and different data sources is therefore indicated
in case of future research along the direction shown by this approach.

From a more general point of view, it is believed that the outcomes of this project
can be used to improve current hydrographic data processing for target detection.
Since the current processing is usually subjective and time consuming, increasing the
automation of the process would be beneficial in subjectivity reduction.

81



82



Chapter 4

Improving Storm-Response
Surveying with PMBS

Echosounders

4.1 Introduction

Hydrographic surveys are required after major storm events to ensure that naviga-
tionally significant waterways are sufficiently clear of debris to support delivery of
recovery supplies and resume normal commercial activity. Under non-response condi-
tions, hydrographic surveys in shallow ports and harbors typically employ multibeam
echosounders (mbes) to acquire high-accuracy depth and uncertainty data with ample
overlapping swath coverage on adjacent ship tracks. Survey operations in response
scenarios are naturally limited in time available for planning and must necessarily
focus on the rapid detection of new hazards and significant seafloor changes within
channels and harbors. The efficiency of these operations depends to a large degree
on the swath coverage achieved and swath overlap required to ensure detection of
hazards. Thus, a major challenge for rapid response surveying in these shallow water
environments has been the geometric swath width limitation of traditional single-head
mbes systems, which yield typical across-track coverage of up to approximately five
times the echosounder altitude above the seafloor.

In the last decade, a type of echosounder called a phase-measuring bathymetric
sidescan (pmbs) has come into widespread use for shallow water applications. pmbs
systems are also known colloquially as phase-differencing sonars, bathymetric sides-
can, or interferometric sonar. These echosounders use multiple transducer arrays on
the port and starboard sides to collect traditional sidescan backscatter amplitude
data as well as to estimate the angles of arrival for acoustic returns at each sample
range. Much like the range and angle data produced by mbes, the pmbs angle(s) of
arrival calculated for sample ranges are used to estimate depths of bottom returns
where the minimum amplitude (and other) criteria are satisfied. This “dual-head”
pmbs configuration supports a broad swath width, up to and including angles above
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the depth of the echosounder (e.g., up to 220◦ total swath width for some models)
to allow surveys of steep slopes and vertical features in shallow environments. Like
mbes data, pmbs sounding accuracy decreases markedly at large ranges and shallow
angles of incidence on the seafloor; however, the value of this outer swath region for
object detection is augmented strongly by acoustic shadows in the co-located sidescan
imagery.

pmbs systems can therefore have a number of advantages when applied to a storm
response scenario. pmbs systems have had a limited application for hydrographic
surveys due to the properties (and volume) of data that they produce. The work
conducted during this project has attempted to assess the applicability of pmbs sys-
tems to storm response scenarios, developing techniques to mitigate the difficulties
of using pmbs systems, and making recommendations on best practices for their use.
Specifically, basic processing difficulties have been addressed through the use of semi-
automated techniques, and questions of object detection and preservation, which are
a significant concern for pmbs systems, have been examined as a function of process-
ing parameters. The work also considers questions of how best to design surveys for
storm response, how to integrate pmbs systems into standardized workflows in com-
modity software, and develops some ideas for how to better utilize all of the sources
of information available from a pmbs. As part of the work reported here, a number of
white papers and other reports have been generated, and are available on the project
website, http://sandy.ccom.unh.edu. The reader is directed to these documents to
provide greater detail on each topic1.

4.2 Historical Challenges of PMBS

Challenges during adoption of pmbs systems into existing hydrographic workflows
have historically been related to sparse sounding density near nadir, high sounding
density away from nadir, lack of (or insufficient software support for) echosounder un-
certainty information, and high standard deviations of soundings compared to bottom
detections provided by beamforming echosounders (i.e., mbes). For example, Fig-
ure 4.1 demonstrates the density and “noisiness” of raw soundings over flat seafloor
near Redbird Reef, Delaware, a site impacted by Super Storm Sandy.

A noteworthy problem with a number of pmbs systems has been low sounding
density—or, in some cases, complete lack of data—in the nadir region. Figure 4.2
illustrates the issue, resulting primarily from the geometry of the intersection of the
spherically spreading transmit pulse with a planar seafloor such that few measure-
ments are possible. In addition, the effect of baseline de-correlation tends to in-
crease the uncertainty in the receive angle measurement that is fundamental to pmbs
bathymetry [107]. Because of these issues, the sounding density at nadir is often
reduced when imaging a planar seafloor with most pmbs systems. Klein systems, for
example, have, until recently, opted to omit data wholesale from this area, leaving a

1Footnotes are used to indicate specific locations within the website.
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Figure 4.1: Example pmbs data collected at Redbird Reef, Delaware. All data from
the middle three lines (top right) are shown, as well as depth estimates from approx-
imately half the swath from the outer two lines. The along-track views highlight the
elevated scatter in the raw soundings and the patterns in outliers along each line.

Figure 4.2: A subset of depth estimates collected in separate surveys with three
different pmbs echosounders illustrating the nadir gap effect. Low data density is
evident near nadir for the system on the left and no data is apparent in the middle
example, though recent software supports reprocessing of raw data files to fill the
nadir gap (2015). The effect of low sounding density near nadir is largely mitigated
by wider bandwidth and different binning techniques for the system on the right.
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large nadir gap below the sonar. However, in recent years, pmbs manufacturers have
largely addressed this issue. For example, the EdgeTech 6205 pmbs2 transmits wider
bandwidth pulses (∼ 65 kHz), decreasing the effective transmitted pulse length, and
therefore increasing the number of soundings possible in the nadir region. Moreover,
the decrease in raw data density in EdgeTech systems is frequently not apparent to
the user, as raw measurements may be binned by angle or range within each ping to
report only the average measurements within each bin. Any decrease in data density
near nadir may not be apparent unless the gaps grow larger than the selected bin
size. In addition, Klein systems now produce soundings through nadir3, where no
attempt to produce nadir data was made previously. Although uncertainty in the
angle measurement increases at nadir, the geometry of the measurement is such that
this translates to increased uncertainty primarily in horizontal positioning rather than
vertical depth measurement. While this increase can make object recognition difficult
it does not generally negatively affect object detection, especially when coupled with
scrutiny of sidescan imagery.

As with any echosounder used for hydrographic purposes, a calibration must be
performed to determine the angular offsets between the transducer arrays and active
motion sensor. Conventional calibration procedures (“patch tests”) use a series of sur-
vey lines over prominent features at various headings, across-track offsets, and speeds
to determine the pitch, roll, and yaw of these systems as-installed. These tests are
routinely applied for mbes systems but become complicated or impossible for pmbs
systems that produce sparse or zero soundings near nadir. Working with Jonathan
Beaudoin4, a process has been developed (currently in preparation for publication)
for calibrating pmbs systems by repeatedly surveying a distinct seabed feature in
reciprocal directions at increasing across-track distances. Careful scrutiny of the cal-
ibration data allow the user to estimate the pitch bias (constant with across-track
range) and yaw bias (proportional to across-track range) separately, while roll is de-
termined using the conventional method of examining the outer swath on reciprocal
headings over flat seafloor.

Therefore, while these issues are not wholly resolved, great strides have been made,
largely by industry, in mitigating their negative effects. The decrease in nadir data
density results from the physics and geometry of the measurement process and as
such cannot be fully eliminated in all circumstances. However, in shallower waters
(< 15 m), with high-bandwidth systems and binning of data, the effect can be largely
mitigated. In addition, the challenges to calibrating Klein systems that resulted from
a complete omission of data at nadir are now eliminated with newer processing meth-
ods that produce a full swath of data. Echosounder uncertainty information is now
provided by several manufacturers, allowing better use of statistical data cleaning and
gridding methods such as cube to effectively address the data density and “noisiness”
issues.

2Released in 2014
3As of SonarPro version 12.2, released in 2015
4Formerly of ccom and now with qps, b.v.
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4.3 Considerations for Object Detection when us-

ing PMBS Echosounders

A primary task of response and routine surveying is to distinguish navigational
hazards from measurement noise and outliers, and ultimately preserve the hazards
throughout the processing chain. Though pmbs systems generate co-located sidescan
imagery with the depth data, the investigation of hazards requires quantification of
least depths through careful scrutiny of the available bathymetric data. Example
datasets in Sandy-impacted regions were examined for object detection using depth
data alone and in conjunction with sidescan imagery to improve hazard identification,
especially in the outer swath region which is critical for increasing survey efficiency
in response scenarios.

Figure 4.3 demonstrates an example of depth data collected with a pmbs system
mounted on an autonomous underwater vehicle (auv) while surveying over a sunken
barge at Redbird Reef, de. The raw soundings include widely scattered watercolumn
targets and a transducer “ring-down” artifact following the path of the auv. In this
example, the primary challenge is to identify and preserve the barge and its railing
in the processed data while rejecting less reliable, non-hazard soundings. The cube
algorithm implementation in caris hips was applied to generate a “first-pass” surface
which was then used as a reference surface for a subsequent round of data filtering to
omit gross outliers and ensure the correct hypothesis is chosen. The result, shown in
Figure 4.3, captures the barge and most of the top railing, highlighting the ability of
statistical methods to extract the most likely targets in a noisy data set.

Registering the depth of an object, or a piece of marine debris, in the raw mea-
surements from any sonar is not sufficient to ensure that the object is “detected.”
For that, the object has to be maintained throughout the processing chain until it is
inspected by a human operator (or a suitable algorithm). The behavior of gridding
algorithms, therefore, can be critical to the success of object detection. The Redbird
Reef data set and another dataset collected at two sites near Long Island, ny, were
used to examine the effects of gridding parameters on preservation of objects through
data processing without manual editing, using commercially available software. Ob-
jects ranging from approximately 1–2 m in all dimensions (fish habitat structures) to
at least 10 m horizontally and protruding more than 3 m from the seabed (shipwrecks)
were present at both Sandy-impacted survey sites.

Trends in all datasets gridded at 10–100 cm suggested that broadening vertical
distributions of soundings in the outer swath, as expected due to increasing angu-
lar uncertainties and refraction artifacts, presented the greatest challenges for object
detection. The apparent data “noisiness” was effectively suppressed as grid size ap-
proached 100 cm but became a serious complication for object detection at grid sizes
smaller than 30 cm (Figure 4.4). Depth anomalies present in regions covered by single
survey passes could not be confirmed as objects or ruled out as purely acoustic ar-
tifacts. Such anomalies require additional data collection, highlighting the utility of
a data acquisition method which examines bathymetry and sidescan imagery in real-
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Figure 4.3: In this example of pmbs data collected at Redbird Reef off the Delaware
coast, a combination of the cube algorithm and a subsequent surface filter for outlier
rejection successfully omits a large portion of noise (gray soundings) while retaining
a sunken barge and railing along its top edge (colored soundings). Coherent lines of
noise in the top of this image result from the transmit pulse captured in the sonar
data, depicting the approximate path of the autonomous underwater vehicle used for
data collection; these points are correctly rejected in this example.
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time, identifies targets requiring additional data, and resurveys these targets in swath
regions where data quality may be higher. Toward this end, a conceptual interface
for streamlined scrutiny of all pmbs data products was developed (Section 4.6).

In evaluating the ability to effectively locate objects of various sizes in pmbs
bathymetric data, an important distinction was noted between detecting an object
in the gridded surface (e.g., recognizing a region of elevated depth estimates) and
identifying the object (e.g., recognizing the features of a sunken vessel). The gridded
surfaces were found to preserve the general presence and shapes of objects of all sizes,
but were insufficiently detailed for object recognition in most cases. Object identi-
fication was possible only after closer scrutiny of subsets of raw data from multiple
viewing angles and benefitted greatly from the associated sidescan imagery. While
this would also probably be the case for mbes data, the smallest objects of interest
in these pmbs datasets (fish habitat structures 1–2 m in horizontal extent and 1 m in
vertical relief) required additional scrutiny of the raw soundings to ensure that the
objects were detected in multiple survey passes and were not simply acoustic artifacts
(Figure 4.5).

The objects in the Redbird Reef and Long Island datasets were surveyed using
different pmbs sonar systems and processed rapidly without manual editing. In both
cases, the utility of a gridded bathymetric surface for object detection depended heav-
ily on the grid size. Resolution of approximately 30 cm, which approximately matches
the along-track sounding density, was found to provide a reasonable compromise be-
tween suppression of outliers and preservation of detail. In fact, comparison of gridded
surfaces at multiple resolutions became a useful tool in evaluating changes in object
appearance or contextual clues, such as scour and bedforms, to build confidence in
detection of an object. All cases benefitted greatly from overlapping survey passes
which were used to corroborate the presence of an object or support rejection of an
artifact, highlighting the need for additional data when potential objects are iden-
tified. In this regard, the capability of the processing method for object detection
and recognition depends heavily on the data acquisition method. Several recom-
mendations for processing were provided in the document “Object Detection with
Phase-Measuring Bathymetric Sidescan Sonar Depth Data.”5 These observations,
in turn, correspond to additional recommendations for pmbs and mbes surveying
outlined in the documents “Storm Response Surveying with Phase-Measuring Bathy-
metric Sidescan Sonar”6 and “Object Detection and Storm Impact Evaluation with
Bathymetric Sonar Systems.”7

In summary, work with these data sets suggests that binning of data within a ping
and reporting the average or median measurement within each bin is preferable, in
general, to reporting raw soundings for object detection. Doing so reduces confusion
in scrutinizing raw soundings to quantify hazards to navigation. When fixed bin sizes
are used, they should be set commensurate with both the hydrographic requirements

5http://sandy.ccom.unh.edu/publications/library/Object_detection_with_PMBS.pdf
6http://sandy.ccom.unh.edu/publications/library/Response_surveying_with_PMBS.pdf
7http://sandy.ccom.unh.edu/publications/library/Object_detection_storm_impact_with_PMBS.pdf
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Figure 4.4: Depth and standard deviation of soundings in each grid cell may be used
in conjunction to detect objects. The depth scale (left column) ranges from 25 m
(red) to 27 m (purple) and the standard deviation scale (right column) ranges from
0 m (dark blue) to 0.5 m (purple); the scale bar is 35 m in total length in all images.
The central portion of the overlapping subway cars is not visible in the depth surface
gridded at 100 cm but stands out in the depth surfaces gridded at 10 cm and 30 cm;
this region also stands out in all standard deviation grids. Sand waves on the order of
2–3 m in wavelength and 0.5 m in relief are clearly visible in the 30 cm grid, but appear
overly smoothed in the 100 cm grid and partially obscured by surface artifacts in the
10 cm grid. These images demonstrate the utility of gridding at multiple resolutions to
determine grid sizes appropriate for the dataset as well as highlight changes between
grids which may indicate the presence of objects.
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Figure 4.5: Two structures separated by approximately 5 m are clearly visible in
bathymetric surfaces gridded at 100 cm (top two images), 50 cm (middle right), and
30 cm (lower right). The color depth scale ranges from 24 m (red) to 25.5 m (purple);
the scale bar is 5 m total length in all images. A northwest-looking subset of the
raw data colored by line (yellow and green soundings, lower left) indicates that these
objects are evident in two independent survey passes, increasing confidence in their
detection but not necessarily supporting their identification.
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for object detection for the survey and not smaller than the along-track ping spacing
to ensure sufficient data density for gridding. (Gridding itself is typically done at
coarser resolution, however matching bin size with along-track ping spacing ensures
a homogenous distribution of data to each grid node.) Furthermore, interpretation
of bathymetric data is greatly enhanced by viewing it with the associated imagery
simultaneously. These recommendations are elaborated upon in Section 4.5.

4.4 Storm Response Survey Protocols

The evaluation of typical pmbs sonar parameters and comparison of cube surfaces
created with various line spacing strategies highlighted several factors to consider
when planning storm response surveys intended to identify navigationally significant
objects and seafloor features while maximizing efficiency of operations. In particular,
low sounding density at nadir (typically between 0–30◦) and elevated uncertainties
of outer swath soundings collected with pmbs systems highlight the importance of
the co-located sidescan imagery for effectively extending swath coverage (e.g., Fig-
ure 4.6). Recommendations for survey planning were developed to maximize the
across-track distance over which hazards are likely to be detected, thereby increasing
survey efficiency through wider line spacing and providing additional overlapping cov-
erage only in areas identified as potential hazards. These recommendations include
line spacing of 8× water depth with slightly larger sonar range settings to ensure
overlap; evaluating sidescan imagery carefully in the outer swath where bathymetric
measurements are more noisy; and resurveying hazards at favourable geometries of
1–3× water depth when quantifying their shoal-most extent. These suggestions are
outlined in the document “Storm Response Surveying with Phase-Measuring Bathy-
metric Sidescan Sonar.”8 Six related “best practices” based on the examinations of
pmbs and mbes data are detailed in the document “Object Detection and Storm Im-
pact Evaluation with Bathymetric Sonar Systems”9 and highlighted below for ready
reference.

4.5 Best Practices for Post-Storm Operations

Here the “best practices” developed during this research are listed concisely for ready
reference, with further discussion provided in the document “Object Detection and
Storm Impact Evaluation with Bathymetric Sonar Systems.”10

1. Collect acoustic water column or sidescan imagery. Interpretation of bathymet-
ric data sets for object detection is significantly enhanced by the availability and
use of full resolution acoustic imagery, such as sidescan backscatter amplitude

8http://sandy.ccom.unh.edu/publications/library/Response_surveying_with_PMBS.pdf
9http://sandy.ccom.unh.edu/publications/library/Object_detection_storm_impact_with_PMBS.pdf

10http://sandy.ccom.unh.edu/publications/library/Object_detection_storm_detection_with_PMBS.pdf
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Figure 4.6: pmbs systems offer survey efficiency gains through increased angular
swath width and real-time analysis of co-located bathymetry data and sidescan im-
agery. In the upper left image, one complete sunken subway car at Redbird Reef,
de, is detected in pmbs bathymetry data from a single survey line. The bathymetry
includes a region of apparent scour (red arrow). pmbs sidescan imagery from the
same line (upper right) assists in the identification of the complete subway car and
also suggests the presence of scour and another object near the limit of the swath
(red arrow). The lower composite image provides a closer view of the sidescan data
showing the potential object in the outer swath (red arrow, lower right) with georef-
erenced bathymetry from additional survey lines (lower left) confirming the presence
of a second subway car. This example demonstrates the potential for efficiency gains
in response scenarios by increasing survey line spacing, evaluating sidescan imagery
where bathymetric data may be inconclusive, and conducting more detailed surveys
only when potential objects are detected.
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for pmbs systems and water column backscatter data for mbes. Where the in-
spection of water column data is possible, it is preferable to seafloor backscatter
or snippet data from mbes systems.

2. Examine data in real time. Small objects that are readily apparent in acoustic
imagery frequently are not reliably captured in bathymetric measurements. For
this reason, operators must scrutinize imagery in real-time or near-real-time,
identifying potential hazards quickly enough to provide opportunities for ad-
ditional data collection at a variety of headings and athwartship distances to
better quantify their shapes and least depths.

3. Scrutinize the outer swath. Both dual-head mbes and standard pmbs systems
provide the capability to generate swath widths beyond 65◦ (∼ 4.25 times wa-
ter depth, or wd) from nadir. When refraction conditions are favorable, swath
widths meeting iho Order 1 standards for bathymetry [108] are possible exceed-
ing 75◦ (∼ 7.5wd), and object detection capabilities are enhanced by acoustic
shadowing at these shallow angles. However, the object measurement capabili-
ties of both systems typically suffer in the sounding data beyond 65◦, such that
these portions of the swath cannot be used reliably for object quantification.
A strategy is required that carefully scrutinizes the outer swath for hazards to
navigation and provides opportunity to revisit them in more favorable survey
geometries for proper quantification of least depths.

4. Utilize systems with real-time uncertainty and in-ping averaging techniques.
When using noaa’s standard metrics [109] for meeting iho requirements for
hydrographic surveys, pmbs systems that provide the capability to estimate
real-time measurement uncertainty and to bin and average the raw bathymet-
ric data across each ping have been shown to perform well and fit readily into
the existing data processing pipeline. Bin averaging can be used to reduce un-
certainty and density of the resulting soundings to acceptable levels while still
maintaining significant features. In addition to examining the raw data, the
ability to vary the bin size or method for processed soundings is also advan-
tageous when investigating suspected targets. For example, binning by angle
may achieve many of the density and uncertainty benefits while preserving sep-
arate targets observed at the same range. Acoustic imagery such as sidescan
backscatter should always be retained at the full resolution for scrutiny of tar-
gets.

5. Use pmbs systems without real-time uncertainty and binning options only with
great care. pmbs systems without real-time uncertainty of their bathymetric
measurements and binning and averaging of data can still be used effectively for
object detection and meeting of iho standards for hydrographic survey. How-
ever, the methods used for processing these data sets and their quantification
for iho purposes are fundamentally different from other systems. Specifically,
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because the data must be used to estimate the uncertainty empirically, care
must be taken to filter data only for outliers and not the “tails” of the natural
distributions of measurements, which may be wide or “noisy.” It is important
to consider the difficulty in establishing the quality of any individual raw sound-
ing other than statistically when taken as part of a larger group of soundings.
Given sufficient data quantity and quality (and while ensuring careful scrutiny
of the raw soundings and sidescan imagery over hazards), it is appropriate to use
gridded surface estimates in lieu of individual soundings to quantify potential
hazards to navigation.

6. Generate cube surfaces using noaa guidance for shallow water [110]. mbes and
pmbs data should be gridded according to noaa’s current standard practices.
Specifically, it is recommended that the cube algorithm be applied at a 0.5 m
grid spacing for water depths less than 20 m. noaa’s standard cube processing
parameters ensure that no single sounding contributes to more than one grid
node, thereby avoiding any “smoothing” effects that could obscure detection of
small objects.

When these parameters are used, it is estimated that the lower limit of object
size detectable by routine visual inspection of a bathymetric surface of this
type is 1 m (the standard iho requirement for object detection), only when
the bathymetric uncertainty of the seafloor (taken as the standard deviation
of the combined seafloor roughness and depth measurement) is less than 20 cm
(1-sigma).

4.6 Improving Integrated Analysis of Bathymetry

and Sidescan Imagery

The sidescan imagery provided by pmbs systems is critical for extending the swath
width for which they are useful for detection of objects to longer ranges and lower
angles of incidence on the seafloor, where depth data typically become least reliable
for this purpose and may be filtered by gridding methods. For example, Figure 4.7
presents an example of a mooring chain that is detected in raw soundings and readily
identified in the sidescan imagery but not represented in the gridded bathymetric
surface. A noteworthy challenge of integrating pmbs systems for response surveying
is to ensure rapid and complete review of all available data streams to ensure detection
of all possible hazards.

However, the tools for examining sidescan imagery in traditional bathymetry pro-
cessing software packages do not provide intuitive layouts for identifying correlated
anomalies in depths and sidescan amplitudes which would be strong indicators for
object presence. In an attempt to address this issue, noaa’s Hydrographic Sur-
veys Division has created their own toolset called “Pydro” which, among many other
things, allows 2d geographic plotting of targets previously identified in sidescan and
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Figure 4.7: Example pmbs bathymetry (upper left) and sidescan imagery (lower left)
over a mooring block and chain. The chain appears clearly in the sidescan imagery
and is detected in a subset of raw soundings (right), but treated as an outlier in the
gridding process.
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bathymetry datasets, allowing users to correlate common hazards into a single target.
This process could be improved by a new tool having a more ready and holistic view
of the raw data when identifying the targets and correlating them between datasets.
Towards this end, a conceptual data processing interface has been developed which
enables the sonar operator to examine raw soundings, full-resolution sidescan im-
agery, and processed depths with on-the-fly adjustability for filtering and gridding
parameters. Other tools available in the interface help the user to identify the same
location in multiple displays (e.g., gridded bathymetry, sidescan, and sounding sub-
set) and model the range from the vessel to a sidescan target within the sounding
subset. This interface would ideally be used during the survey to quickly identify tar-
gets of interest and prioritize regions for more detailed data acquisition. Figures 4.8
and 4.9 present screenshots of the prototype interface, which is discussed alongside
other acquisition and processing recommendations in the document “Object Detec-
tion and Storm Impact Evaluation with Bathymetric Sonar Systems”11 available on
the project website.

4.7 Integrating PMBS in the Traditional MBES Sur-

vey Framework

In order to more fully incorporate pmbs systems for routine and response survey-
ing, it is important to demonstrate the performance of these systems in comparison
to traditional “benchmark” survey platforms (e.g., mbes) and incorporate existing
data processing paths. The Common Dataset collected for the Shallow Survey 2015
conference included overlapping pmbs (Figure 4.10) and mbes surveys in Plymouth
Harbour, England, which provided timely examples for these considerations using
commercially available current generation systems, as operated to (hopefully) the
best of their capabilities by their manufacturers. Rapid processing of both datasets
using the cube algorithm in caris hips (without manual editing) revealed a high
degree of agreement over the vast majority of low-slope areas and indicated important
differences in depths recorded over rugged terrain and edges of objects (Figure 4.11).
The root causes of consistent differences in high-slope areas are not clear as of this
report, although there is some evidence to suggest that positioning difficulties may
be in part to blame.

Despite the differences between the “benchmark” mbes and pmbs survey results
in high-slope areas, an important result is that the pmbs survey agrees to within a few
centimeters over the vast majority of the survey area. A survey of similar seafloor in a
shallow harbor environment under response conditions would likely require wider line
spacing (for efficiency) and depend heavily on the sidescan imagery to increase the
effective swath coverage for hazard detection in order to maximize survey coverage.
The degree to which a traditional mbes survey plan can be modified for increased

11http://sandy.ccom.unh.edu/publications/library/Object_detection_storm_impact_with_PMBS.pdf
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Figure 4.8: A conceptual pmbs graphical user interface (gui) presenting raw sound-
ings, gridded bathymetry layers, and sidescan imagery simultaneously for maximum
data utility during review for object detection. Data shown here include a shipwreck
and sand wave field at Redbird Reef, de, surveyed with an auv-mounted pmbs sys-
tem shortly after Super Storm Sandy. This conceptual gui combines visualization
tools that are traditionally available only in separate software packages, potentially
enhancing the object detection process by streamlining the visual correlation of tar-
gets in different data products.
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Figure 4.9: A closer view of the shipwreck with the “Show Cursor On All” option
selected helps the user to identify the same location (red crosshairs) in the gridded
bathymetry and the sidescan imagery from multiple passes for better context and
correlation among targets. With the “Show Range Ring” option selected, the range
to a high-amplitude target selected in one sidescan image (green cursor, middle right)
is depicted in the 3d subset (green range ring, lower left); this option helps to confirm
the relationship between shallow soundings in survey line 2 (light green soundings)
and the corresponding shallow sidescan feature.
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Figure 4.10: pmbs bathymetry in Plymouth Harbour, England, gridded at 50 cm
using the cube algorithm in caris hips 9.0. The raw soundings were filtered and
averaged using 25 cm range bins. The depth color scale ranges from 0–45 m. No
manual editing has been performed.
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Figure 4.11: Difference between two example Shallow Survey 2015 pmbs and mbes
bathymetric datasets gridded at 50 cm. The depth difference color scale ranges from
-0.5 to +0.5 m, with positive values corresponding to shallower results in the PMBS
bathymetric surface. Most of the low-relief areas show differences of ±0.10 m in
depths up to 40 m, whereas larger differences appear highly correlated with slopes
near rugged features.
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pmbs swath coverage was investigated using the Redbird Reef pmbs dataset, creating
combinations of survey lines to mimic line spacing strategies with different amounts
of swath overlap (Figure 4.12) and evaluate the resulting cube bathymetric surfaces.

These trials showed that all major objects in the artificial reef, including scour
around objects and bedforms in object-free areas, were readily apparent with line
spacing of at least seven times the echosounder altitude. As with some other pmbs
systems, a small data gap existed at nadir; this region would be subject to increased
scrutiny in the sidescan imagery, along with the outer swath beyond the range of re-
liable depth soundings. Despite this data gap and increased vertical scatter in outer
swath soundings, the cube surfaces created from pmbs data effectively represented
all the reef objects apparent in traditional mbes data collected simultaneously from
a surface vessel. Data quality in the outer swath suggest that the pmbs record-
ing range could have been successfully extended during acquisition, though this was
purposefully limited at the time to increase the ping rate and along-track sounding
density under a more routine survey line plan. In a response scenario where the
recording range would be extended considerably to ensure sidescan coverage in the
outer swath, these simulated line plans suggest that a line spacing of up to ten times
the echosounder altitude could be supported for object detection relying on sidescan
imagery. It is not expected that bathymetric data quality will be sufficient to quan-
tify hazards to navigation beyond 4–5 times echosounder altitude, however, requiring
objects detected in sidescan to be resurveyed in a more favorable geometry.

4.8 Summary

Throughout the project, emphasis has been placed on understanding how data from
pmbs systems can be incorporated into existing hydrographic workflows to improve
efficiency in storm response situations. The inclusion of echosounder uncertainty data
is critical for modern bathymetric processing algorithms used in commercial software,
such as the cube algorithm. Several issues with current processing software were
discovered and/or examined in more detail throughout the project and resolved in
recent software releases. For instance, several caris processing functions have been
updated: outlier rejection tools for GeoSwath and EdgeTech pmbs systems that were
previously inoperable have been repaired; real-time uncertainty estimates for Klein
systems are now interpreted properly; and a mistranslation of EdgeTech systems
which previously caused across-track profile anomalies has been remedied. In short,
the increased interest in using pmbs for routine and response hydrographic surveys has
motivated echosounder and software vendors to improve acquisition and processing
performance to better meet hydrographic survey standards.

A primary outcome of this project is the observation that many of the challenges
faced during initial adoption of pmbs systems have been addressed in recent hard-
ware and software updates. Current-generation data acquisition and pre-processing
systems offer strategies for outlier rejection and data binning to achieve sounding den-
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Figure 4.12: pmbs data collected at Redbird Reef, off the coast of Delaware, were
rapidly processed without manual editing in a combination of line spacing strategies to
evaluate bathymetric surfaces and the representation of objects with various levels of
swath overlap. The survey was conducted using an autonomous underwater vehicle
(auv) at an altitude of 6 m above the seafloor with line spacing of approximately
20 m and a range limit of approximately 25 m, yielding half-swath overlap between
adjacent lines. Under a response scenario with real-time analysis of sidescan imagery
for detection of objects to be resurveyed at more favorable geometries, the acquisition
range limit could likely be extended to 30–40 m and line spacing could be set to
approximately 60 m or ten times the echosounder altitude.
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sity and quality suitable for many purposes, from post-storm to routine surveys. The
role of sidescan imagery in extending the useful swath coverage for hazard detection
is a critical consideration for improved response survey efficiency with pmbs sonars.
Furthermore, several systems now report echosounder uncertainty data that can be
interpreted by commercial off-the-shelf software to better support cube processing
and inform Total Propagated Uncertainty (tpu) estimates. In general, these advances
represent a new generation of opportunities for pmbs data collection and processing
which may offer efficiencies for response and routine survey operations, especially if
they can be incorporated into the existing hydrographic processing pipeline.
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Chapter 5

Visualization

5.1 Introduction

The visualization component of this project addressed the analytical process of deter-
mining whether potential marine debris targets are either natural features or actual
debris that may need to be removed.

Finding and identifying marine debris is a tedious and time consuming task. Au-
tomatic target recognition algorithms can greatly speed up the task by searching vast
survey datasets for anomalies that could be debris. However, they still leave ana-
lysts with thousands of potential marine debris targets that need to be individually
examined.

A pair of tools that speed up and distribute this analytical process were devel-
oped: a rapid decision tool and a crowdsourcing website. Together, they can increase
analysts’ efficiency and decrease disaster response times.

The Marine Debris Rapid Decision Tool (mdrdt) increases analysts’ efficiency
by automating many of the common and repetitive steps in the marine debris tar-
get evaluation workflow. Using metrics based on the computer graphics concept of
silhouette edges, the tool automatically calculates multiple optimal views for each
debris target. These optimal views are likely to reveal enough shape information
for analysts to make decisions without the need to manually reposition the (virtual)
camera themselves.

These optimal views were also utilized within an experimental crowdsourcing web-
site that allowed the public to participate in marine debris target evaluation. It was
found that, even though participants were untrained and unexperienced in the task,
most were able to understand and complete the task with reasonable accuracy (as
high as 84% agreement with an expert). Their collective decisions can be used to
greatly reduce the number of marine debris targets that must be evaluated by the
limited pool of trained analysts. This can increase analytical capacity in time-critical
disaster response situations when such analytical capacity can be in very short supply.
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Figure 5.1: Screenshot of the Marine Debris Rapid Decision Tool.

5.2 Marine Debris Rapid Decision Tool

The Marine Debris Rapid Decision Tool (mdrdt), shown in Figure 5.1, streamlines
the marine debris evaluation analytical workflow by eliminating or automating as
many analyst interactions as possible.

Traditionally, marine debris target evaluation begins with an analyst loading a
survey dataset, then iteratively navigating to and examining each target’s location
within the dataset. Instead of loading whole survey datasets, mdrdt loads individual
targets. The tool automatically displays targets one after another, removing any need
for navigation interactions between multiple targets in a dataset.

The targets themselves are generated external to the tool by whichever automatic
target recognition algorithm is being used to process the survey data. Each time the
algorithm detects a potential debris target, a file is created that contains a snippet
of the survey data around that target. The most basic version of this is bathymetry
data in the form of rasterized regular grids, stored in a bag file. Exporting targets
for the tool to ingest is simple, as the minimum data required is only raw bathymetry
or a point cloud.

The use of multiple optimal views can save an enormous amount of analyst time.
Traditional, single-perspective interfaces require users to repeatedly move and rotate
the camera to view a target from multiple angles. mdrdt instead provides multiple
viewing windows, each of which automatically show a different, optimized views of
the debris object. Ideally, for the majority of cases, looking over the automatically
chosen views will provide enough information to make a decision, and thus an analyst
will not have to waste time repositioning the camera at all.
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Figure 5.2: In this view of a debris target mesh, the faces highlighted in red have
silhouette edges for the current camera viewpoint.

If the automatically chosen views are not sufficient, the analyst is able to manip-
ulate each of them as necessary to get a better view. Each view is a fully-functional
instances of ccom’s Virtual Test Tank 4D software, which is a 3d/4d interactive
geospatial visualization and analysis package based on previous research projects
regarding visual analysis of datasets such as dynamic ocean flow simulations and
sediment transport models [111,112].

The multiple optimal views are chosen based on a scoring system. The tool cal-
culates how the target will appear as viewed from a wide range of possible camera
locations and viewing angles. For each of these candidate views, a score is computed
based on how many features it reveals. The candidate view with the highest score
is selected, and its viewing angles are saved as the first optimal view. All of the re-
maining candidate views are then re-scored, removing any credit for features already
revealed in the previously picked views. The highest scoring view is again saved, and
this process continues until the desired number of optimal views is reached.

The primary metric used to score views is based on the concept of silhouette edges.
In 3d computer graphics, a silhouette edge is an edge within a triangle mesh that,
for a particular camera view-point, is shared between a front-facing (visible) triangle
and a back-facing triangle. They are often used in non-photorealistic rendering to
illustratively emphasize shape features. In geospatial and terrain models, these sil-
houette edge are most commonly encountered along the edges of prominent features
or objects, where they generally form the boundary between the foreground and the
background. This can be seen in in Figure 5.2, which shows faces with silhouette
edges along a shipwreck from a single camera viewpoint.

Views that produce many prominent silhouette edges are likely to reveal the shape
of target objects. Iteratively picking views that reveal different groups of silhouette
edges helps to ensure all the shape information is being revealed across the multiple
views. This effect can be seen in Figure 5.3, which shows the faces with silhouette
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Figure 5.3: In this view of a debris target mesh, the faces highlighted in red have
silhouette edges that have been cumulatively revealed by the top four viewpoints.

edges that have been revealed by picking the top four optimal views. Notice that the
entire perimeter of the target object has been marked as revealed by the four views,
indicating that the views provide a comprehensive depiction of the target’s shape.
An example set of these optimal views is shown in Figure 5.4.

Analysts can mark targets to indicate whether they are natural features or marine
debris, as well as the confidence level of the decision, including a no-confidence “un-
known” option. By having analysts include uncertainty measures in their decisions,
it is possible to re-display the sub-set of ambiguous targets to other analysts for a
second round of evaluations.

When a decision is entered, the tool records the decision, the user’s estimated
confidence level, and target information to a report file covering that analysis session.
The tool then switches to the next target, and the process repeats until all targets
have been evaluated.

The tool also provides a method for automatically rendering static images for each
target, and then exporting all of the optimal views for each target to form datasets for
use outside the tool. This is used to support a web-based analysis method intended
to support the potential for crowdsourcing marine debris identification (as described
in the following section).

5.3 Crowdsourcing Marine Debris Evaluation

After a disaster, minimizing response times is critical. While it is best to have trained
analysts available to perform debris identification, the number available, and their
time, is limited. A possible alternative to this is to consider the concept of using
crowdsourcing to conduct marine debris identification, thereby increasing capacity
during times of high demand.
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Figure 5.4: The top four views chosen for a debris object mesh of a shipwreck using
the tool’s optimal view algorithm.
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Figure 5.5: A screenshot of the web-based crowdsourcing interface. Users see a single
zoomed-in image, and can scroll through or click on the thumbnail images at the
bottom to view each of them as many times as needed.

Members of the general public were invited to conduct debris analyses via an in-
terface on the project website1, which displays the optimal views generated by the
Marine Debris Rapid Decision Tool (Figure 5.5). While the users had no formal train-
ing, if large majorities make the same decision, the basic premise of crowdsourcing
is that they are likely to be correct. (And it does not require a significant majority
to be slightly better than average in order to achieve better than average results.)
Even if their decisions are not 100% reliable, they can still be used to filter massive
collections of targets into more manageable numbers for re-examination by trained
analysts.

The project was advertised with links to the website through ccom’s social media
accounts and the university’s main webpage. Users were given a brief overview of the
project’s goals and motivations. They were provided with only the bare minimum of
basic directions and examples, enough to ensure they understood the task, but not
detailed or in-depth enough to be considered training.

A total of 82 targets were available for evaluation via the online interface. To
assist in data quality assessment, image sets for 12 targets whose categorizations were

1http://sandy.ccom.unh.edu/participate.html
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already known were included, which consisted of objects that were obviously debris or
featureless seafloor. These quality assessment targets were distributed amongst the
unknown targets, with the distribution skewed towards the beginning of the target
set to ensure they were evaluated even by people who only assessed a few targets.

The quality assessment targets were of two types: four obvious debris targets
of obvious shipwrecks, and eight snippets of barren seafloor devoid of any notable
features. The design of the evaluation system is such that each participant evaluates
the same targets as any other participant in the same fixed order.

Over the course of approximately one week, approximately 800 members of the
public visited the crowdsourcing site, 34 of whom registered and participated in the
project. Additionally, an expert familiar with interpreting hydrographic and bathy-
metric data was recruited to evaluate the targets using the interface in order to provide
a baseline by which to compare the evaluations of the participants.

A total of 12 users (35%) evaluated all 82 targets, and 15 users (44%) evaluated
at least half of the targets. An average of 45 evaluations were made per user.

The quality assessment targets were compared with user evaluations to identify
any confused or possibly malicious participants, however all users appeared to be
making evaluations in good faith.

To assess the quality of the data collected from participants, raw percentage agree-
ments between users were computed as a rough metric of user quality. Of the 82
targets, 60 (73%) were agreed upon by a majority of the users who rated them.
The inter-rater percentage agreements had a weighted average agreement of 77.4%.
Comparing users to the expert’s evaluations yielded a weighted average agreement of
78.9%.

Furthermore, when the quality assessment targets were used to filter out the lower-
quality evaluators, there was a significant increase in agreement both between users
(81%) and against the expert (84%).

This research indicates that crowdsourcing marine debris identification is a promis-
ing approach for increasing analytical capacity during time-critical disaster response,
particularly for filtering and drastically reducing the number of targets that must be
evaluated by trained analysts.

5.4 Summary

Finding and identifying marine debris is a tedious and time consuming task. Auto-
matic target recognition algorithms can greatly speed up the task by searching vast
survey datasets for anomalies that could be debris. However, they still leave ana-
lysts with thousands of potential marine debris targets that need to be individually
examined.

A tool that automates many of the common and repetitive steps in the marine
debris target evaluation workflow has been presented. Using metrics based on the
computer graphics concept of silhouette edges, the Marine Debris Rapid Decision
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Tool automatically calculates multiple optimal views for each debris target. These
optimal views are likely to reveal enough shape information for analysts to make de-
cisions without the need for manually repositioning the camera themselves, increasing
analysts’ efficiency.

These optimal views were also utilized within an experimental crowdsourcing web-
site that allowed the public to participate in marine debris target evaluation. It was
shown that, even though participants were untrained and unexperienced in the task,
most were able to understand and complete the task with reasonable accuracy. Their
collective decisions can be used to greatly reduce the number of marine debris targets
that must be evaluated by the limited pool of trained analysts. This can increase
analytical capacity in time-critical disaster response situations.

Complete details on the analysis tool, its optimal view algorithms, and the crowd-
sourcing website design and results can be found in the paper entitled “Streamlining
the Evaluation of Potential Marine Debris Targets for Disaster Response”, which was
published in mts/ieee oceans 15, Oct., 2015 [113] and is available online2.

2http://sandy.ccom.unh.edu/publications/library/OCEANS15-Butkiewicz-Nov15.pdf
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Chapter 6

Outreach

6.1 Introduction

Outreach is now an essential part of any scientific program, and quite rightly so: the
public, ultimately and for the most part, fund the science through their taxes, and
so it seems only fair that scientists should invest some time and effort in explaining
what it is that they do, what the implications are, and why the research is important
enough to be funded.

This project is no different, and as part of the outreach component of this project,
in addition to the project website (http://sandy.ccom.unh.edu), a number of static
and interactive visualizations, infographics, and a museum exhibit were created.
stem1 events were also conducted through interactions with the SeaPerch program,
and the University’s Ocean Discovery Day.

6.2 Interactive Mapping

To communicate to the public where and what is being cleaned up, an interac-
tive online debris map was developed. The site (http://sandy.ccom.unh.edu/vis-
ualizations/infographics.html) features a fully interactive map (Figure 6.1) that
merges a collection of Sandy-related debris records with public domain imagery and
vector data. It allows the general public to quickly zoom into their particular region-
of-interest and see not only where debris cleanup efforts are occurring, but explore
and examine individual debris objects that have been cataloged and retrieved.

Comparison of datasets in an efficient manner is essential for many tasks, including
marine debris identification, and object detection. Different methods of viewing multi-
ple datatypes were therefore also considered, and demonstrated for the public through
the project website. For example, WebLens, a web-based implementation of the
“magic lens” visualization technique was developed (http://sandy.ccom.unh.edu/vis
ualizations/weblens.html), which allows the user to examine a view a small portal

1Science, Technology, Engineering, and Math.

113



Figure 6.1: Zoomed-in view of individual marine debris records around Brighton
Beach, Brooklyn, ny.

(“lens”) of one dataset overlaid on top of a background dataset (Figure 6.2); the
base layer and lens can be readily moved, zoomed, and resized with a mouse, making
it much more fluid as an interaction and correlation technique than other alterna-
tives [114].

6.3 Infographics

Infographics are simplified, graphical descriptions of technical subjects, or represen-
tations of data, designed to convey the essence of the topic with clarity, but also with
quantitative precision. Examples include simplified data visualizations that allow the
general public to explore geo-spatial data without the complexity that this normally
entails, or an abstracted representation of a topic that engages the public.

In an attempt to educate the public about both our related work at ccom and
the Sandy clean-up project as a whole, a series of visual infographics were developed.
Visual infographics are stand-alone images that focus on single topics, explaining
the issues and presenting supporting data and information with rich imagery and
simple visualizations. Most importantly, they are easily shared and distributed by
the general public over social media channels, which means that they reach more
viewers than traditional web content or links to such content.
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Figure 6.2: Example of the “weblens” paradigm for comparison of two datasets. Here,
there are two movable “lenses” through which the user can see sidescan data, and
post-storm aerial photography overlaid on the pre-storm imagery, so that comparisons
can be readily made.
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The visual infographics developed include “What do marine debris look like?—
And how well can we see them?” (Figure 6.3) which demonstrates the capabilities of
multi-beam sonar and lidar to reveal and resolve submerged objects (vehicles, ship-
wrecks, etc.), and “Marine Debris Identification and Processing” (Figure 6.4), which
visually explains the process from deciding where to survey for debris to automatic
target recognition, identifying debris, and finally salvage and cleanup. This includes
explaining how the experimental techniques such as the rapid decision tool and the
crowdsourcing website fit into and improve the overall process.

6.4 Permanent Museum Exhibit Development

A partnership between ccom and The Seacoast Science Center (Rye, nh) has led
to the development of an interactive museum exhibit that engages the public with a
touchscreen based game revolving around the detection and identification of marine
debris. “A Hurricane Hits Home” is a multi-station touchscreen exhibit (Figure 6.5)
geared towards children, and integrates a large salvaged portion of a historical wooden
shipwreck into its physical design.

The game invites people to examine a number of coastal regions and harbors in
Sandy affected areas (Figure 6.6). It teaches them about modern mapping technol-
ogy by letting them control boats with multibeam sonars and airplanes with lidar
sensors. They drag these vehicles around maps to reveal the underlying bathymetry
underneath the satellite photo backgrounds. They learn the applications and limita-
tions of sonar and lidar through understanding where the vehicles can and cannot
collect survey data (e.g. lidar does not work in deep water, and the boat cannot go
in shallow areas).

As users collect bathymetry data, they occasionally reveal marine debris objects
on the seafloor. Once all the debris objects in a level have been located, the game
challenges them to identify them based on their appearance in the bathymetry data.
They must compare the simulated bathymetry images of the debris targets to photos
of possible objects, and choose the correct matches to achieve a high score.

This exhibit will have a permanent space at Seacoast Science Center, and should
be installed and open to the public in late 2015 or early 2016.

6.5 STEM Events

For many educators, opportunities to expose students to science, technology, engi-
neering, and maths (stem) experiences are greatly prized. A particular example of
this is the SeaPerch program (http://www.seaperch.org), developed by the mit Sea-
Grant program, and funded by the Office of Naval Research, where teams of three to
four k-12 students (mostly from middle schools, although there are also home school
groups, and 4-h groups represented) design and build a small remotely operated ve-
hicle (rov) using simple motors and plastic pipe (Figure 6.7). The students then
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Figure 6.3: Example visual infographic showing detection capabilities of remote sens-
ing systems.
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Figure 6.4: Example visual infographic explaining object identification processes.
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(a) Conceptual design. (b) Current implementation.

Figure 6.5: The “A Hurricane Hits Home” exhibit at the Seacoast Science Center,
Rye, nh. The wooden structure behind the exhibit is part of the hull of a ship wrecked
locally during a significant storm event.

Figure 6.6: Example screenshot from “A Hurricane Hits Home” during the opening
stages of the game. The operator is guiding the multibeam across the survey area in
order to gain insight into what might be on the seafloor, and understand the limits
of this type of survey technology.
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Figure 6.7: SeaPerch program events. Clockwise from top left: students building their
SeaPerch rovs; testing rovs in the tank at unh during Tech Camp 2014; morning
events of the competition day in the unh Fieldhouse pool, 7 June, 2014.

compete in a series of regional and national heats, carrying out obstacle course tests,
and a dexterity challenge against the clock. During the regional SeaPerch compe-
tition at unh in 2014, however, the project arranged for the afternoon event to be
themed around marine debris. After a short briefing on the nature of marine debris,
and its consequences, the students were challenged to modify their SeaPerch rovs to
make them capable of investigating and removing marine debris (Figure 6.8), which
sparked a frantic wave of collaboration, re-design, and friendly rivalry between the
dozen teams present, while at the same time communicating the ideas of discovery,
identification, and restoration that are an essential concept in storm response scenar-
ios.

A second opportunity for outreach took the form of the unh Ocean Discovery
Day event, which takes place annually around the beginning of October. Each year,
a growing number of students take part in an “educators day” on a Friday, and then
the University’s Marine Program facilities are open to the public on the following
Saturday; in 2015, approximately 1,600 k-12 students toured the Chase Ocean En-
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Figure 6.8: SeaPerch afternoon “team challenge” event, 7 June 2014. Clockwise from
top left: divers deploying simulated “marine debris” in the engineering test tank at
the Chase Ocean Engineering Lab at unh; a team collaborating on how to adapt their
SeaPerch for the marine debris clean-up challenge; a collaborative “scoop” dual-Perch
marine debris removal system; SeaPerch rovs removing simulated debris from the
tank.
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Figure 6.9: Victoria Price explains lidar mapping technology and habitat mapping
to a group of k-12 students during the educator’s day of Ocean Discovery Day 2014.

gineering Lab and surrounding activities on educator’s day, and approximately 600
members of the public visited on the following day.

In 2014 and 2015, the project provided communicators for Ocean Discovery Day
(Figure 6.9) to explain the technology being used, and to explain the various aspects
of habitat mapping, marine debris detection, and bathymetric mapping being used
as part of the Super Storm Sandy project.

6.6 Summary

The outreach component of this project has attempted to provide a variety of different
opportunities to communicate the goals, objectives, and research associated with the
project to the public, and particularly to k-12 students, and their educators. This has
taken the form of a public-facing website, some visual infographics, development of a
museum exhibit, and some interactive stem-oriented events. The website acts as both
the archive for products generated by the project and an opportunity to communicate
some of the objectives and results of the research to the general public; it has also been
used as a means to test some of the ideas associated with visualization, including the
ability to use crowdsourcing techniques to solve some of the semi-tractable problems
associated with marine debris. Possibly the longest lasting results of the project,
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however, is the museum exhibit, which attempts to describe the nature of survey,
the problems of identification of marine debris, and the trade-offs involved in storm
response surveying to children.

Inevitably, it will likely be several years before any effect of the outreach efforts re-
ported here bear fruit (e.g., with students becoming involved in the oceans, surveying,
or marine debris due to their experiences). However, the project has at least demon-
strated that it is possible to engage the public in the understanding of a complex
research project, and thereby explain to them why they, ultimately, should provide
funding for such projects in the future.
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Chapter 7

Summary

7.1 Outcomes

7.1.1 LIDAR and Habitat

The essential objectives associated with the research in lidar and habitat mapping
were to investigate the limits of existing techniques for the use of lidar and satellite
imagery, and to develop new techniques for these data sources that could be used in
a storm-response scenario.

The research demonstrated that there is significant potential for the development
of lidar waveform features to assist with habitat mapping, in addition to conven-
tional uses for nautical charting and shoreline assessment, particularly when coupled
with appropriate normalization of the returned signals (such as reflectance maps from
eaarl-b data) and classification techniques (such as the Object-based image analysis
(obia) reported here). Although it was shown that the same features can be derived
from different lidar systems and that the same obia analysis can be moved between
datasets and locations, it is likely that the future direction of this work is going to
be related to robustness and tuning of the algorithms, so that they become more
automated.

In a storm-response scenario, one of the difficulties is gauging whether any changes
observed in remotely sensed (or even physical observation) data is significant or not.
That is, can the observed change be blamed on the storm, or is it natural variability of
the area? To adequately answer this question requires a baseline estimate of change,
which can be hard to achieve. (This might in itself argue for an active campaign to
establish these baselines in preparation for future storm events, rather than hoping
that such baselines can be derived ad hoc for each event.) The research reported here
demonstrates that it is possible to establish such a time series from archives of satel-
lite imagery, either for shoreline change, or for submersed aquatic vegetation, or from
multiple lidar surveys, if available. This time series then allows for, e.g., seasonal
variability to be established, and allows for an assessment of modeling and instru-
mentation variability, so that an estimate of “normal” variability can be established
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against which the change in the event of a storm can be assessed. The advantage
of satellite imagery is simply that it is much more likely that the raw materials to
establish a timeline will exist in extant archives than for lidar data.

Finally, the research demonstrated that although it might not be entirely possible
to use satellite-derived bathymetry for direct update of charts, it is certainly possible
to use this information to determine areas of significant change in the wake of a storm,
and thereby use this to determine if further work is required on any particular chart
(by some other means). As a means of prioritizing the distribution of survey resources
in the wake of a storm such approximate indicators can be particularly effective.

7.1.2 Marine Debris

In the work on marine debris detection, characterization, and communication, the key
objectives were to develop techniques for robustly identifying marine debris objects.

The research showed that the problem of marine debris detection was made sig-
nificantly more difficult by the lack of uniformity in the definition of what constitutes
“marine debris,” leading to a much more complex problem than is typically found
in object detection scenarios, e.g., in mine-like object detection, or pipeline inspec-
tion. The research did demonstrate, however, that by suitable choice of mathemati-
cal frameworks, it was possible to constrain the overall problem of marine detection
through the use of an a priori model of marine debris production derived from obser-
vations in previous storm events, combined with a multiplicity of specific detection
algorithms that are fused together to give a more robust solution than any detec-
tor on its own would achieve. This leads naturally to a map of the probability of
debris presence that can be used for resource allocation as well as general detection.
The method developed was shown to strongly match ground-truth estimates of debris
location.

An observed difficulty with marine debris research was that there was no common
vocabulary for the declaration of marine debris objects, and no mechanism by which
the information could be readily transported between data collectors, analysts, and
decision-makers. The research here demonstrated that it is possible to adapt a stan-
dard, well-implemented technology to this purpose, with a Marine Debris Markup
Language that allows for well-controlled data transfer, and provides a standard vo-
cabulary to discuss marine debris.

7.1.3 PMBS

Phase-measuring bathymetric sidescan (pmbs) systems have had a checkered history
in the hydrographic world, mainly due to a number of difficulties in data generation,
data formats, and processing options from the early manufacturers of such systems.
The objectives for examining these systems were therefore to determine how they
might be used for surveying, particularly when used in the response to a storm,
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where their characteristics lend them to the purpose, and the limits to which such
systems might be subject.

The research demonstrated the pmbs systems have now resolved many of the issues
that were previously problematic through a combination of improved hardware and
processing techniques, including the development and wider adoption of uncertainty
models. In particular, the research showed that with a non-conventional patch-test
procedure and appropriate pre-processing it is now quite possible to process pmbs
data with conventional hydrographic data processing tools.

A common, and much debated, question with pmbs systems is their ability to
detect objects, and to preserve them through the processing chain until they can
be “recognized” by the human operator at the end of the chain (or a suitable algo-
rithm). The research here demonstrated the behavior of pmbs systems with respect
to processing techniques, particularly grid resolution and object preservation, and de-
veloped a series of best practices to optimize the potential for object detection with
this type of data.

pmbs systems generally have a significantly wider available swath than mbes
systems. However, under conventional survey circumstances all of the data from this
swath might not be entirely acceptable for charting purposes. In the case of a storm
response, however, more lenient requirements might be operating, in which more of
the swath could be considered usable, and thereby make for more efficient surveying.
The work reported here considers this possibility, and developed protocols for survey
line structure and survey best practices for pmbs systems.

Finally, it was argued that use of only bathymetry or backscatter information in
the approach to object detection, and pmbs data processing in general, is suboptimal,
particularly since these data are acquired simultaneously with a pmbs system in a
sidescan-like geometry, and therefore are always available. A processing paradigm was
proposed that would allow for simultaneous display of the bathymetry and backscat-
ter within the same region, with suitable controls for processing of the various data
types, and for their visualization and manipulation, along with tools for simultane-
ous localization of targets in all data. Although requiring further development, this
proposed tool could significantly benefit the human operators tasked with examining
such data in future storm responses.

7.1.4 Visualization

Visualization is a core component of much of the research reported here, but as a
separate entity the specific objectives being addressed were to develop better methods
of supporting marine debris identification, and leverage these methods to assist with
the resource limitation problem that is common in storm response: there are only a
finite number of trained analysts available to identify targets.

The research demonstrated a prototype of a new visualization tool for marine
debris that attempts to improve on operator throughput by pre-selecting a series of
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views of the object being considered such that the chances of having to manipulate
the viewpoint in order to positively identify the object as debris are minimized. Much
of the time taken in identification (and hydrographic data processing in general) is
in orienting the data such that the problem being remediated is correctly positioned
to make the remediation simple. The more often this can be done automatically, the
faster the operator can make each decision. Although this technique was developed
specifically for marine debris recognition, the extension to, and benefit for, general
hydrographic data processing is obvious.

Addressing the concern of operator availability, an extension to this viewpoint
selection technique has been proposed, with the goal of making the problem of debris
identification into something that can be successfully crowd-sourced. The concept
of crowd-sourcing [115] is that a large group of untrained observers can be more
successful at some tasks than a small group of highly trained specialists, primarily
because it only requires a small majority of the untrained observers to be above
average in order to sway the statistics of a decision towards the correct answer. In
the context here, making the debris identification problem into something that can
be passed to the general public unlocks the potential for a crowd of observers to
deliver multiple votes on the same object, allowing for any misclassifications to be
accommodated by the (possibly small) super-identifiers. The research conducted here
shows that it is possible to attract a crowd to help with problems of this kind, and
that the crowd can be almost as effective as a trained observer (except, of course, that
there can be many more of them). This demonstration does not address, however,
the difficulties of sustaining a crowd, or the number of observers per object required
to guarantee a reliable classification of objects, which would be important in a full
implementation. It does, however, indicate that such an implementation deserves
further study.

7.1.5 Outreach

For outreach, the objectives are simple: communicate the goals and results of the
research being conducted to the general public, engaging them in the science being
conducted.

The research reported has attempted to build in this concept from the start within
each effort, and express it within a number of different venues. Thus, for example, all
of the research products that have been generated in the course of the project have
been published on a specially-designed website, which has also included infographics
in both electronic and printable form to attempt to explain the concepts behind the
research to the (interested, but non-specialist) general public.

Similarly, there have been a number of opportunities to explain the principles,
components, and outcomes of the research to the public. Specifically, the project
has been represented within the unh Marine School’s Ocean Discovery Day for the
duration of the project, allowing the researchers to talk directly with growing numbers
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of k-12 students and adults over the course of a two-day event each year. The project
also assisted in a stem-enrichment event for the region SeaPerch competition in 2014.

Finally, and probably most lastingly, the project has also collaborated with a local
science museum to develop an exhibit that explains the effects of hurricanes on the
coast, and the limitations, difficulties, and techniques used to respond to such events.
The exhibition will be permanently on display at the museum, but could be readily
reproduced for either a touring display, or reimplementation at other museums.

In addition to the public outreach, the results of the research have also been
communicated with the scientific community through a number of conference and
journal papers (see p. 133).

7.2 Broader Impacts

The research described here has covered a wide variety of topics across a broad range
of technologies and fields, and has made positive contributions to each. Some of the
contributions, however, have the potential to have broader impact beyond the scope
of the project.

The first topic with potentially broader impact is the use of lidar waveform fea-
tures for habitat classification and monitoring. While techniques for habitat mapping
with acoustic remote sensing techniques are now common, they are always limited to
the requirement that there is an instrument in the water, so that the rate of advance
is necessarily slow—and more so in shallow water where there is risk of damage to
the sensor. In the same way that hydrographic lidar surveys can potentially cover
ground much more quickly than mbes surveys, use of lidar waveform features for
habitat could open up the potential for much wider habitat studies, which are more
frequently repeated. Of course, as with hydrographic surveys, there is also the issue
that the spot-spacing for lidar surveys can be limited, which has implications for the
smallest resolvable habitat area. Given that habitat tends to be an areal estimate,
however, this is unlikely to be as much of a difficulty as it is in hydrographic surveys.
In addition, the new generation of topo-bathymetric lidar systems promise signifi-
cantly smaller spot-spacing than purely bathymetric lidar systems, mitigating this
difficulty. The impact of this idea is therefore more likely to be limited by the robust-
ness with which the techniques can be applied to different areas and lidar sensors,
which, notwithstanding the results reported here, is still a partially-open question.

Generation of calibration baselines from lidar, but particularly from satellite
imagery databases is also potentially impactful. In many fields, there is a significant
lack of a formal uncertainty model for the instruments in use, and very few repeated
observations of the same area over a long time period. Consequently, it is often
difficult to determine whether a change observed is the result of instrument error, or
of natural variability of the field being observed (e.g., seasonal or decadal variability
of sav). The development of an analysis technique that can be applied relatively
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readily to a data source that has a significant time series opens up the possibility of
generating a usefully-scaled time history of variability for “normal” behavior of the
system under study, and thereby provides an estimate of what “significant” change
needs to look like in order to warrant the name. The techniques reported here allow
for the use of satellite imagery to address questions of sav variability, and therefore to
provide an estimate of change rates, even if they are approximate, that can potentially
be transferred to other remote-sensing modalities.

The marine debris detection problem is difficult, and is likely to remain so for at
least the near future. Part of this difficulty is in the variety of different things that
can be considered marine debris, and therefore the irreducible difficulty of specifying
what it is that various detection schemes need to look for in order to identify it.
Consequently, the concept, developed here, of a multi-component hierarchical model
with semi-empirical prior and a pool of partially-skillful detectors could potentially
have impact significantly beyond the immediate application. Adding prior structure
to the problem results in an emphasis on the solutions that are considered more
likely, and allowing for a group of detectors, each of which is allowed to be fallible (so
long as they are not fallible simultaneously), makes for a much more robust solution
than would otherwise be the case. The advantage of the solution developed is in
its flexibility, so that it is readily possible for other prior structuring information to
be substituted, and for other detectors to be added to augment, or replace, those
currently in use (e.g., for different datasets). Thus, the method proposed can act
itself as a structuring framework on which other analyses can be built.

pmbs systems have been the subject of intermittent attention within the hydro-
graphic community for at least the last fifteen years. With the research reported
here demonstrating that many of the fundamental problems that have limited their
more widespread adoption have been resolved with advancing hardware and software
capabilities, the observations described here and in the white paper reports developed
during this project point to a future where pmbs systems could be more commonly
used for wide scale hydrographic mapping, which could be very impactful from the
point of view of efficiency of survey. Although it is not yet entirely clear that there
is particular benefit in the increased potential swath of pmbs systems with respect
to bathymetric data, the results reported here do indicate that the potential of the
backscatter from these devices is not being exploited to the extent that it could be,
and that a suitable processing system that optimally combined the use of both sources
of information might make a significant difference on the potential for object discov-
ery and anomaly detection in a hydrographic context, which leads to some interesting
potential applications.

The use of automatic tools for computer-assisted hydrographic processing of data
has been a major change in the field over the last fifteen years, and adoption of
new technologies appears to be keeping this trend moving into the foreseeable future.
However, the methods by which operators interact with data have not changed nearly
as significantly, and the ultimate remediation tool for hydrographic data (editing indi-
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vidual soundings by hand) is essentially the same now as it was in the last century, and
remains a significant bottleneck to processing speeds. Any tool that would accelerate
that process could have very significant impact on data processing throughput, and
in particular the hydrographic ping-to-chart time. The techniques developed here to
automatically select viewpoints for analysis of marine debris could therefore be a very
interesting addition to the field when applied more generally. For example, consider
the potential for this technique applied to general data, where the operator, when
faced with an anomalous depth surface reconstruction, has the viewpoint automati-
cally aligned to highlight the difficulty (with auxiliary views to assist), and therefore
finds that making the choice of what to do is significantly easier. Or, consider the case
where the operator, faced with a sounding remediation, automatically has the view-
point computed so that the soundings likely to be removed are highlighted against a
blank background so that removing them can be accomplished without demanding
the time required to reposition the viewpoint. Such extensions of the technique de-
veloped here are not necessarily axiomatic, but could be extremely fruitful if pursued,
particularly if pursued in conjunction with the combined backscatter and bathymetry
decision-making tool outlined with respect to pmbs systems.

Finally, the last topic of research developed here that could have potential impact
beyond the immediate use in this project is the concept of making debris identifi-
cation into a crowd-sourced problem. Crowd-sourcing has been used previously in
the context of debris through efforts to document material that is directly observed
(e.g., during beach cleanups), but applying it to the problem of marine debris could
solve one of the problems for which the ffo was initially developed: how to deal with
the volume of data that is collected in response to a storm event. The research here
demonstrates the potential for a crowd to make appropriate decisions about marine
debris, and in the wake of a storm the potential for recruiting a crowd from the many
people that would like to assist, but lack the resources to do so directly, is high.
Properly applied, this idea has the potential to significantly alter the mechanisms by
which trained operators are expected to deal with data identification, moving from
rote mechanical review of data to skilled assessment of the success of the crowd, and
targeted review of the more obstinate cases for which the crowd’s assessed skill is
poor. This potentially impacts not only the volume of data that the operators would
be required to assess, but also the types of operator skill sets and training expected.

Of course, the individual research results, taken individually, are not the only
potential for broader impacts: combinations of the techniques developed could also be
profitably pursued. For example, there is obvious complementarity between the work
done on marine object detection, combined analysis of backscatter and bathymetry
from pmbs systems, and multi-view data visualization that could result in significantly
more powerful tools for marine debris detection, but also for object detection in
general hydrographic contexts. Similarly, combinations of satellite imagery and its
derived products with the lidar waveform analysis techniques could provide auxiliary
products for iocm purposes. The results reported here should, therefore, correctly be
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viewed as a basis for further research in addition to their immediate benefits, rather
than an end in themselves.

7.3 Conclusion

Support of iocm operations in the wake of a storm is challenging. However, the
research developed as part of this project demonstrates that there are improvements
to be had, and better methodologies to be used, to develop new iocm multi-use
products and accelerate the collection, processing, and dissemination of data and
products.

The trick, however, might very well be ensuring that these facilities, once devel-
oped, remain current and available until the next storm arrives.
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Glossary

ABBREVIATION DEFINITION

adcirc Advanced Circulation, a hydrographic model.
aic Akaike Information Criterion, a measure of the information

value of a classification problem.
alb Airborne Lidar Bathymetry.
alps Airborne Lidar Processing System, a software package used

to process eaarl-b data.
auc Area Under the Curve, a metric used to assess the overall

behavior of a classifier using the area under the receiver
operating characteristic curve.

auv Autonomous Underwater Vehicle.
ccom Center for Coastal and Ocean Mapping, a research center

at the University of New Hampshire.
cei Coastal Engineering Index.
cmecs Coastal and Marine Ecological Classification Standard.
co-ops Center for Operational Oceanographic Products and Ser-

vices, a part of noaa’s National Ocean Service.
crssa Center for Remote Sensing and Spatial Analysis, a research

group at Rutgers University.
csr Complete spatial randomness, a reference model for spatial

statistical analysis.
cube Combined Uncertainty and Bathymetry Estimator, an al-

gorithm for processing raw high-density hydrographic data.
czmil Coastal Zone Mapping and Imaging Lidar.
dem Digital Elevation Model.
dsas U.S. Geological Survey Digital Shoreline Assessment Sys-

tem, a software package for ESRI ArcMap to assist in shore-
line change analysis.

dtm Digital Terrain Model.
eaarl-b Experimental Airborne Research Lidar, model B.
erma Environmental Response Management Application.
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ABBREVIATION DEFINITION

enc Electronic Navigational Chart.
ffo Federal Funding Opportunity.
fgdc Federal Geographic Data Committee.
gis Geographic Information System.
gml Geographic Markup Language, an xml-derived language for

describing geospatial data.
gps Global Positioning System, usually a synonym for any

Global Satellite Navigation System, but also specifically the
u.s.-based NavStar system.

gui Graphical User Interface.
iho International Hydrographic Organization.
iocm Integrated Ocean and Coastal Mapping, a noaa program

to encourage multi-role mapping missions, and the reuse of
mapping data. Also a noaa research center located at the
Joint Hydrographic Center, University of New Hampshire.

lidar Light Detection and Ranging, a remote sensing methodol-
ogy where rapid pulses of light are reflected off the land or
seabed, and ranges are computed based on time of flight.
Modern instruments also record the intensity of light re-
turned for further analysis.

lisa Local Indicator of Spatial Association, a method for assess-
ing the spatial correlations in a dataset.

jhc Joint Hydrographic Center, a noaa-unh research center at
the University of New Hampshire.

mbes Multibeam echosounder, a remote sensing methodology
where acoustic means are used to determine the depth of
water, and the magnitude of acoustic return from reflectors
(usually the seafloor) below the survey platform.

mcd Marine Chart Division, part of noaa’s Office of Coast Sur-
vey.

mcmc Markov Chain Monte Carlo, a technique for evaluating the
posterior distribution in a Bayesian analysis problem.

mdml Marine Debris Markup Language, an xml-derived specifi-
cation language for marine debris.

mdp Marine Debris Program, part of noaa’s National Ocean
Service.

mdrdt Marine Debris Rapid Decision Tool, a software application
developed during the project to assist in marine debris iden-
tification through use of automatically generated 3d views
and a simplified feedback interface.
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ABBREVIATION DEFINITION

mhw Mean High Water, a tidal datum.
mllw Mean Lower Low Water, a tidal datum.
mple Maximum pseudo-likelihood estimation, a technique used to

approximately fit auto-logistic spatial models to observed
binary detection data.

msi Multi-spectral Imagery, a type of optical remote sensing
data where the visible (and possible other) light bands are
split into numerous sub-bands so that spectral characteris-
tics can be estimated.

naip National Agriculture Imagery Program.
ngs noaa’s National Geodetic Survey.
njdot New Jersey Department of Transportation.
noaa The U.S. National Oceanic and Atmospheric Agency.
nsde noaa Shoreline Data Explorer, an on-line service providing

information on the national shoreline.
obia Object-based Image Analysis, an analysis technique used for

classification of imagery and other multi-dimensional spatial
datasets.

ocs noaa’s Office of Coast Survey.
pmbs Phase Measuring Bathymetric Sidescan, a remote sensing

methodology that uses comparison of received signal phase
on two or more sonar receivers to distinguish angle of arrival
for reflected acoustic energy, and thereby compute sounding
positions.

roc Receiver Operating Characteristic, a measure of the perfor-
mance of a classifier.

rov Remotely Operated Vehicle.
rsd Remote Survey Division, part of noaa’s National Geodetic

Survey.
sac Spatial Auto-Correlation, a measure of the strength of the

statistical relationship between spatially separated elements
of one or more fields.

sav Submersed Aquatic Vegetation.
sdb Satellite-Derived Bathymetry, a remote sensing methodol-

ogy where optical imagery from satellites is used, along with
some physical measurements of depth, to develop an esti-
mate of bathymetric depths.
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ABBREVIATION DEFINITION

sss Super Storm Sandy.
stem Science, Technology, Engineering, and Mathematics.
tpu Total propagated uncertainty, a measure of the overall un-

certainty of measurements.
unh University of New Hampshire.
usace U.S. Army Corps of Engineers.
usgs U.S. Geological Survey.
uvm University of Vermont.
vif Variance Inflation Factor, a measure of the significance of

multi-colinearity in an ordinary least squares problem.
vnir Visible-Near Infrared, a specification for satellite imaging

products.
wv-2 World View II, an imaging satellite.
xml eXtensible Markup Language, a commonly-used text-based

language for description of data.
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R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R.
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