Developing Methodology for Efficient Eelgrass Habitat Mapping Across Lidar Systems

VICTORIA PRICE¹, JENNIFER DIJKSTRA¹, JARLATH O’NEIL-DUNNE², CHRISTOPHER PARRISH³, ERIN NAGEL¹, SHACHAK PE’ERI¹

UNIVERSITY OF NEW HAMPSHIRE CENTER FOR COASTAL AND OCEAN MAPPING, DURHAM, NH USA¹; UNIVERSITY OF VERMONT, BURLINGTON, VT USA²; OREGON STATE UNIVERSITY, CORVALLIS, OR USA³
Some background knowledge…

- Hurricane Sandy
 - Made landfall on October 29, 2012
 - $50 Billion in damages
 - Most of damage focused on coastal zones of New York, New Jersey, and Connecticut, USA
 - Huge data collection efforts in response to the storm
 - Airborne lidar bathymetry (ALB) collected in days immediately before and after storm- provides a unique opportunity to observe storm effects on backshore environments
Where is our study area?

- Barnegat Bay, NJ
 - Shallow, sandy, poorly flushed
 - Bordered by development
 - Two meters of storm surge during Sandy
 - Barrier island breach
 - Overwash
Our questions:

▶ How can we use lidar in conjunction with imagery to detect and classify submerged aquatic vegetation (SAV)?

▶ Is Object-Based Image Analysis (OBIA) an effective and efficient method for SAV classification?

 ▶ Object-Based Image Analysis: Identifies objects contained within geospatial data and structures them into a network

 ▶ Traditional manual classification from imagery is cumbersome- it is time consuming, and one person must classify all data sets

▶ Can one classification scheme be used across multiple lidar sensors?
Methodology: Manual classification

- Long-term time series for monitoring and possible storm impact assessment
- Many limitations due to imagery quality and variation in collection times
A brief introduction to lidar...

- Light Detection and Ranging
- Uses laser pulses to measure elevation or bathymetry
- Newer topobathymetric sensors allow for benthic mapping of waters too shallow for acoustic data collection methods

Topobathymetric Lidar

- Narrow beam, green laser (532 nm) lidar systems
 - Collects high resolution data (<1m footprint)
 - Suitable for backshore, intertidal and shallow nearshore areas

Benefits:

- The ability to rapidly survey very large areas
- The ability to collect data immediately after storm events, when debris may pose navigational hazards to small vessels for acoustic data collection
- Provides a more robust data set than other frequently used remote sensing techniques (imagery, satellite)
The systems we used

<table>
<thead>
<tr>
<th></th>
<th>Riegl VQ-820-G</th>
<th>AHAB Chiroptera II</th>
<th>USGS EAARL_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td>NOAA NGS (National Geodetic Survey)</td>
<td>NOAA NOS (National Ocean Service)</td>
<td>USGS</td>
</tr>
<tr>
<td>Footprint</td>
<td>0.6 m</td>
<td>1.5 m</td>
<td>0.3 m</td>
</tr>
<tr>
<td>Max depth</td>
<td>1x secchi depth</td>
<td>1.5 x secchi depth</td>
<td>2.5 x secchi depth</td>
</tr>
</tbody>
</table>
Methodology: eCognition, imagery, and lidar

- Benefits of lidar:
 - Can be flown immediately after a storm
 - High resolution data
 - Multiple data types (bathymetry, reflectance, more metrics coming soon)

- Object Based Image Analysis
 - eCognition uses a “holistic” approach to image classification - users can train rule sets based on their knowledge

Here, we compare methodology - is OBIA a faster way to get the same results as the current manual classification methodology?
Data Layers

Imagery

Reflectance

Elevation
Segment and Classify
What did we find?
Comparing methods

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patches</td>
<td>0.06</td>
</tr>
<tr>
<td>Mean Patch Size</td>
<td>0.26</td>
</tr>
<tr>
<td>Patch Size St. Dev</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean Patch Edge</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean Shape Index</td>
<td>0.41</td>
</tr>
<tr>
<td>Perimeter to Area Ratio</td>
<td>0.25</td>
</tr>
</tbody>
</table>
What did we find?
Analysis across systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patches</td>
<td>0.19</td>
</tr>
<tr>
<td>Mean Patch Size</td>
<td>0.41</td>
</tr>
<tr>
<td>Patch Size St. Dev</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean Patch Edge</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean Shape Index</td>
<td>0.13</td>
</tr>
<tr>
<td>Perimeter to Area Ratio</td>
<td>0.02*</td>
</tr>
</tbody>
</table>

Mann-Whitney Test
What does this mean?

- No significant differences in classification between manual methods and OBIA using lidar and manual classification using imagery alone.
 - These methods are comparable for detecting and mapping SAV
 - Still need ground truthing to determine accuracy - this is difficult logistically

- No significant differences in classification for OBIA classification between lidar systems
 - This methodology can easily be applied to multiple data sets collected by multiple sensors
Caveats and considerations

- **Manual classification:**
 - Variation with imagery quality, depth
 - Time consuming
 - What one person sees as “dense” may be another person’s “sparse” - one person needs to classify all years

- **OBIA using lidar and imagery:**
 - More data layers
 - Large areas surveyed quickly
 - Efficient - once a rule set is developed, it can be used to classify large data sets
 - Lidar faces many of the same limitations as imagery - water clarity, wave action can affect data quality
What’s next?

- Is OBIA a more accurate method for SAV classification?
 - Intensive ground truthing in collaboration with Stockton College

- Analysis of EAARL-B lidar data collected pre- and post-Hurricane Sandy to assess the immediate effects of the storm

- Large-scale classification of Barnegate Bay from EAARL-B data, NJ coast from Riegl data

- The addition of several more lidar waveform metrics as a data layer for OBIA to create an even more robust data set
 - Can we differentiate between vegetation types?
What do those wave forms tell us?

Bottom returns: shape based features

- Pearson’s skewness coefficients
- Kurtosis
- Skewness
- Mean
- AUC
- Mode
- Median
- Width
- Amplitude
- Slopes
Gridded AUC
Thanks!

- Funding provided by NOAA
- Thank you to the USGS, Stockton College, and UVM’s Spatial Analysis Laboratory

If anyone is interested in an “OBIA for Marine Mapping” user group, please come see me!